规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
EGFR ( IC50 = 2.4 nM ); HER2 ( IC50 = 15.7 nM ); HDAC ( IC50 = 4.4 nM ); HDAC1 ( IC50 = 4.5 nM ); HDAC2 ( IC50 = 12.6 nM ); HDAC3 ( IC50 = 13.2 nM ); HDAC6 ( IC50 = 5.1 nM ); HDAC5 ( IC50 = 11.4 nM ); HDAC9 ( IC50 = 67.2 nM ); HDAC10 ( IC50 = 26.1 nM ); HDAC8 ( IC50 = 79.8 nM ); HDAC7 ( IC50 = 373 nM )
|
|
---|---|---|
体外研究 (In Vitro) |
体外活性:CUDC-101 对 I 类和 II 类 HDAC 具有特异性,不会抑制 III 类 Sir 型 HDAC。 CUDC-101 对其他蛋白激酶(包括 KDR/VEGFR2、Lyn、Lck、Abl-1、FGFR-2、Flt-3 和 Ret)表现出弱活性,IC50 为 0.85 μM、0.84 μM、5.91 μM、2.89 μM、3.43 μM 、 1.5 μM、 abd 3.2 μM,分别。 CUDC-101 在许多人类癌细胞类型中显示出广泛的抗增殖活性,IC50 为 0.04-0.80 μM,在大多数情况下比厄洛替尼、拉帕替尼以及伏立诺他与厄洛替尼或拉帕替尼的组合具有更高的效力。 CUDC-101 有效抑制拉帕替尼和厄洛替尼耐药的癌细胞系。 CUDC-101 可抑制厄洛替尼耐药的 EGFR 突变体 T790M,但其作用并不完全,抑制后 Amax 约为峰值酶活性的 60%。在各种癌细胞系中,CUDC-101 治疗以剂量依赖性方式增加组蛋白 H3 和 H4 的乙酰化,以及 HDAC 非组蛋白底物(如 p53 和 α-微管蛋白)的乙酰化。 CUDC-101 还抑制肿瘤细胞中的 HER3 表达、Met 扩增和 AKT 重新激活。激酶测定:使用 Biomol Color de Lys 系统评估 I 类和 II 类 HDAC 的活性。简而言之,HeLa 细胞核提取物用作 HDAC 的来源。在比色人工底物存在的情况下,将不同浓度的 CUDC-101 添加到 HeLa 细胞核提取物中。在测定结束时添加显色剂,并在 Wallac Victor II 1420 酶标仪中以 405 nM 测量酶活性。使用 HTScan EGF 受体和 HER2 激酶检测试剂盒测量 EGFR 和 HER2 激酶活性。简而言之,在 400 mM ATP 存在下,将 GST-EGFR 融合蛋白与合成生物素化肽底物和不同浓度的 CUDC-101 一起孵育。用链霉亲和素包被的 96 孔板捕获磷酸化底物。磷酸化水平通过抗磷酸酪氨酸和铕标记的二抗进行监测。在测定结束时添加增强溶液,并在 Wallac Victor II 1420 酶标仪中以 615 nM 测量酶活性。细胞测定:癌细胞系(HCC827、H358、H460、HepG2、Hep3B2、Sk-Hep-1、Capan1、BxPc3、MCF-7、MDA-MB-231 和 Sk-Br-3)以 5000 至 10000 铺板96 孔平底板中每孔含有不同浓度 CUDC-101 的细胞。在 0.5% 胎牛血清存在的情况下,将细胞与 CUDC-101 一起孵育 72 小时。使用 Perkin-Elmer ATPlite 试剂盒通过三磷酸腺苷 (ATP) 含量测定来评估生长抑制。通过使用 Apo-ONE 均质检测试剂盒测量 Caspase-3 和 -7 的活性来常规评估细胞凋亡。
|
|
体内研究 (In Vivo) |
在 Hep-G2 肝癌模型中,以 120 mg/kg/天的剂量施用 CUDC-101 可诱导肿瘤消退,这比最大耐受剂量的厄洛替尼(25 mg/kg/天)和等摩尔的伏立诺他更有效浓度剂量(72 mg/kg/天)。 CUDC-101 以剂量依赖性方式抑制厄洛替尼敏感的 H358 NSCLC 异种移植物的生长。 CUDC-101 还在厄洛替尼耐药的 A549 NSCLC 异种移植模型中显示出对肿瘤生长的有效抑制作用。 CUDC-101 在拉帕替尼耐药、HER2 阴性、EGFR 过表达的 MDA-MB-468 乳腺癌模型和 EGFR 过表达的 CAL-27 头颈鳞状细胞癌 (HNSCC) 模型中产生显着的肿瘤消退。此外,CUDC-101 还可抑制 K-ras 突变型 HCT116 结直肠癌和表达 EGFR/HER2 (neu) 的 HPAC 胰腺癌模型中的肿瘤生长。
|
|
酶活实验 |
Biomol Color de Lys 方法用于评估 I 类和 II 类 HDAC 的作用。简而言之,HDAC 是从 HeLa 细胞的核提取物中获得的。在人工比色底物存在下,用不同浓度的 CUDC-101 处理 HeLa 细胞核提取物。测定结束时添加显色剂后,在 Wallac Victor II 1420 酶标仪中以 405 nM 测量酶活性。 HTScan EGF 受体和 HER2 激酶检测试剂盒用于测量 EGFR 和 HER2 激酶活性。简而言之,将 400 mM ATP 添加到含有不同浓度的 CUDC-101 和 GST-EGFR 融合蛋白的合成生物素化肽底物的孵育混合物中。链霉亲和素包被的 96 孔板用于捕获磷酸化底物。用抗磷酸酪氨酸和铕标记的二抗可测量磷酸化的量。实验结束时,添加增强溶液,并使用Wallac Victor II 1420酶标仪在615 nM处测量酶活性。
|
|
细胞实验 |
在 96 孔平底板中,癌细胞系以每孔 5000-10,000 个细胞和不同的 CUDC-101 浓度进行铺板。在 0.5% 胎牛血清存在下,将 CUDC-101 与细胞一起孵育 72 小时。使用 Perkin-Elmer ATPlite 试剂盒,通过三磷酸腺苷 (ATP) 含量测定来评估生长抑制。 Apo-ONE 均相检测试剂盒用于测量 Caspase-3 和 -7 的活性,以便常规评估细胞凋亡。
|
|
动物实验 |
|
|
参考文献 |
|
|
其他信息 |
CUDC-101 has been used in trials studying the treatment of Cancer, Tumors, Liver Cancer, Breast Cancer, and Gastric Cancer, among others.
HDAC/EGFR/HER2 Inhibitor CUDC-101 is a multi-targeted, small-molecule inhibitor of histone deacetylase (HDAC), epidermal growth factor receptor tyrosine kinase (EGFR/ErbB1), and human epidermal growth factor receptor 2 tyrosine kinase (HER2/neu or ErbB2) with potential antineoplastic activity. HDAC/EGFR/HER2 inhibitor CUDC-101 inhibits the activity of these three enzymes but the exact mechanism of action is presently unknown. This agent may help overcome resistance to inhibition of EGFR and Her2 through a simultaneous, synergistic inhibition of EGFR, Her2, and HDAC. By incorporating histone deacetylase (HDAC) inhibitory functionality into the pharmacophore of the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) inhibitors, we synthesized a novel series of compounds with potent, multiacting HDAC, EGFR, and HER2 inhibition and identified 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide 8 (CUDC-101) as a drug candidate, which is now in clinical development. 8 displays potent in vitro inhibitory activity against HDAC, EGFR, and HER2 with an IC(50) of 4.4, 2.4, and 15.7 nM, respectively. In most tumor cell lines tested, 8 exhibits efficient antiproliferative activity with greater potency than vorinostat (SAHA), erlotinib, lapatinib, and combinations of vorinostat/erlotinib and vorinostat/lapatinib. In vivo, 8 promotes tumor regression or inhibition in various cancer xenograft models including nonsmall cell lung cancer (NSCLC), liver, breast, head and neck, colon, and pancreatic cancers. These results suggest that a single compound that simultaneously inhibits HDAC, EGFR, and HER2 may offer greater therapeutic benefits in cancer over single-acting agents through the interference with multiple pathways and potential synergy among HDAC and EGFR/HER2 inhibitors.[1] Receptor tyrosine kinase inhibitors have recently become important therapeutics for a variety of cancers. However, due to the heterogeneous and dynamic nature of tumors, the effectiveness of these agents is often hindered by poor response rates and acquired drug resistance. To overcome these limitations, we created a novel small molecule, CUDC-101, which simultaneously inhibits histone deacetylase and the receptor kinases epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) in cancer cells. Because of its integrated histone deacetylase inhibition, CUDC-101 synergistically blocked key regulators of EGFR/HER2 signaling pathways, also attenuating multiple compensatory pathways, such as AKT, HER3, and MET, which enable cancer cells to escape the effects of conventional EGFR/HER2 inhibitors. CUDC-101 displayed potent antiproliferative and proapoptotic activities against cultured and implanted tumor cells that are sensitive or resistant to several approved single-targeted drugs. Our results show that CUDC-101 has the potential to dramatically improve the treatment of heterogeneous and drug-resistant tumors that cannot be controlled with single-target agents. Further, they provide a framework to create individual small molecules that simultaneously antagonize multiple biochemically distinct oncogenic targets, suggesting a general paradigm to surpass conventional, single-target cancer therapeutics. [2] Castration-resistant prostate cancer (CRPC) is an androgen receptor (AR)-dependent disease expected to cause the death of more than 27,000 Americans in 2015. There are only a few available treatments for CRPC, making the discovery of new drugs an urgent need. We report that CUDC-101 (an inhibitor od HER2/NEU, EGFR and HDAC) inhibits both the full length AR (flAR) and the AR variant AR-V7. This observation prompted experiments to discover which of the known activities of CUDC-101 is responsible for the inhibition of flAR/AR-V7 signaling. We used pharmacologic and genetic approaches, and found that the effect of CUDC-101 on flAR and AR-V7 was duplicated only by other HDAC inhibitors, or by silencing the HDAC isoforms HDAC5 and HDAC10. We observed that CUDC-101 treatment or AR-V7 silencing by RNAi equally reduced transcription of the AR-V7 target gene, PSA, without affecting viability of 22Rv1 cells. However, when cellular proliferation was used as an end point, CUDC-101 was more effective than AR-V7 silencing, raising the prospect that CUDC-101 has additional targets beside AR-V7. In support of this, we found that CUDC-101 increased the expression of the cyclin-dependent kinase inhibitor p21, and decreased that of the oncogene HER2/NEU. To determine if CUDC-101 reduces growth in a xenograft model of prostate cancer, this drug was given for 14 days to castrated male SCID mice inoculated with 22Rv1 cells. Compared to vehicle, CUDC-101 reduced xenograft growth in a statistically significant way, and without macroscopic side effects. These studies demonstrate that CUDC-101 inhibits wtAR and AR-V7 activity and growth of 22Rv1 cells in vitro and in vivo. These effects result from the ability of CUDC-101 to target not only HDAC signaling, which was associated with decreased flAR and AR-V7 activity, but multiple additional oncogenic pathways. These observations raise the possibility that treatment of CRPC may be achieved by using similarly multi-targeted approaches.[3] |
分子式 |
C24H26N4O4
|
|
---|---|---|
分子量 |
434.49
|
|
精确质量 |
434.195
|
|
元素分析 |
C, 66.34; H, 6.03; N, 12.89; O, 14.73
|
|
CAS号 |
1012054-59-9
|
|
相关CAS号 |
|
|
PubChem CID |
24756910
|
|
外观&性状 |
White to yellow solid powder
|
|
密度 |
1.3±0.1 g/cm3
|
|
熔点 |
174-177ºC
|
|
折射率 |
1.638
|
|
LogP |
2.84
|
|
tPSA |
109.09
|
|
氢键供体(HBD)数目 |
3
|
|
氢键受体(HBA)数目 |
7
|
|
可旋转键数目(RBC) |
12
|
|
重原子数目 |
32
|
|
分子复杂度/Complexity |
624
|
|
定义原子立体中心数目 |
0
|
|
SMILES |
O(C1=C(C([H])=C2C(C(=NC([H])=N2)N([H])C2=C([H])C([H])=C([H])C(C#C[H])=C2[H])=C1[H])OC([H])([H])[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(N([H])O[H])=O
|
|
InChi Key |
PLIVFNIUGLLCEK-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C24H26N4O4/c1-3-17-9-8-10-18(13-17)27-24-19-14-22(21(31-2)15-20(19)25-16-26-24)32-12-7-5-4-6-11-23(29)28-30/h1,8-10,13-16,30H,4-7,11-12H2,2H3,(H,28,29)(H,25,26,27)
|
|
化学名 |
7-[4-(3-ethynylanilino)-7-methoxyquinazolin-6-yl]oxy-N-hydroxyheptanamide
|
|
别名 |
CUDC-101; CUDC 101; 7-(4-(3-Ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide; CUDC101; 7-[[4-(3-Ethynylphenylamino)-7-methoxyquinazolin-6-yl]oxy]-N-hydroxyheptanamide; CHEMBL598797; 1A7Y9MP123; CUDC101
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.08 mg/mL (4.79 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (4.79 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (4.79 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 15% Captisol: 30mg/mL 配方 5 中的溶解度: 16.67 mg/mL (38.37 mM) in 50% PEG300 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.3015 mL | 11.5077 mL | 23.0155 mL | |
5 mM | 0.4603 mL | 2.3015 mL | 4.6031 mL | |
10 mM | 0.2302 mL | 1.1508 mL | 2.3015 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT01384799 | Completed | Drug: CUDC-101 Drug: Cisplatin |
Head and Neck Cancer | Curis, Inc. | November 2011 | Phase 1 |
NCT01171924 | Completed | Drug: CUDC-101 | Head and Neck Cancer Liver Cancer |
Curis, Inc. | July 2010 | Phase 1 |
NCT00728793 | Completed | Drug: CUDC-101 | Tumors | Curis, Inc. | August 2008 | Phase 1 |
NCT01702285 | Terminated | Drug: CUDC-101 | Cancer | Curis, Inc. | September 2012 | Phase 1 |
![]() |
---|
![]() |
![]() |