Chlorhexidine hydrochloride

别名: 盐酸氯己定; 盐酸洗必泰; 盐酸氯已定; Chlorhexidine Dihydrochloride 盐酸氯己定;醋酸洗泌泰 医药级;氯己定二盐酸盐;氯己定二盐酸盐 标准品;洗必泰-D8二盐酸盐;洗必泰丁二盐酸盐;洗必泰盐酸盐;盐酸氯己定 EP标准品;盐酸氯己定标准品;盐酸洗必泰标准品;1,1'-己基双(5-[对氯苯基]双胍);1,1'-己基双[5-(对氯苯基)双胍]盐酸盐;1,6-双(N5-[对氯苯基]-N1-双胍)己烷;1,6-双(对氯苯基二胍基)己烷二盐酸盐;Chlorhexidine dihydrochloride,certified 标准品;双氯苯双胍己烷 二盐酸盐;盐酸洗;洗必泰;1,1′-己基双(5-[对氯苯基]双胍);1,6-双(N5-[对氯苯基]-N1-双胍)己烷;1,1′-己基双(5-[对氯苯基]双胍)
目录号: V18187 纯度: ≥98%
Chlorhexidine diHCl 是一种抗菌剂,用作防腐剂和其他用途。
Chlorhexidine hydrochloride CAS号: 3697-42-5
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5g
10g
Other Sizes

Other Forms of Chlorhexidine hydrochloride:

  • 葡萄糖酸氯己定
  • Chlorhexidine-d8
  • Chlorhexidine acetate hydrate
  • Chlorhexidine-d8 dihydrochloride
  • Chlorhexidine diacetate (醋酸氯己定)
  • 洗必泰
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
Chlorhexidine diHCl 是一种抗菌剂,用作防腐剂和其他用途。
生物活性&实验参考方法
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Topically, chlorhexidine is unlikely to undergo any degree of systemic absorption. Orally administered chlorhexidine, such as that found in oral rinses for dental purposes, is very poorly absorbed from the gastrointestinal tract - the Cmax in human subjects following an oral dose of 300mg was 0.206 µg/g and occurred approximately 30 minutes after ingestion (Tmax). Following the insertion of 4 PerioChips in 18 adult patients, no detectable plasma or urine chlorhexidine levels were observed.
Excretion of chlorhexidine gluconate occurs almost exclusively via the feces, with less than 1% of an ingested dose excreted in the urine.
34 newborn infants who had been bathed in a standard manner with Hibiscrub were studied to find out whether it was absorbed percutaneously. Low levels of chlorhexidine were found in the blood of all 10 babies sampled by heel prick, and 5 of 24 from whom venous blood was taken. /Chlorhexidine gluconate/
Percutaneous absorption of the antimicrobial agent chlorhexidine (labelled with carbon-14) was studied in rats. Less than 5% of the topically applied chlorhexidine was absorbed during a 5-day period. Excretion of absorbed radioactivity occurred mainly in the feces.
The percutaneous absorption of chlorhexidine gluconate (chlorhexidine digluconate; Hibitane) through hairless rat skin with or without stratum corneum was studied. For tests carried out on whole skin, storage in cutaneous structures after 48 hr was more important than diffusion; the reverse was observed for stripped skin. When the skin was stripped, the amount absorbed was multiplied by approximately 100, and the amount stored in skin by approximately 10. The difference in chlorhexidine diffusion observed between whole and stripped skin was related to the physicochemical characteristics of chlorhexidine. /Chlorhexidine gluconate/
To evaluate the elimination kinetics of chlorhexidine in milk when used as an intramammary infusion to stop lactation in cows. ... The study was performed in 2 phases. Three cows were studied in each phase. All cows were treated with chlorhexidine suspension by infusion into a mastitic mammary gland quarter after 2 milkings 24 hours apart. Foremilk samples (100 mL) were collected from treated and untreated (controls) mammary gland quarters of each cow. Chlorhexidine was extracted from raw milk, and residue concentrations were quantified by use of high-performance liquid chromatography. Foremilk samples from days 2, 5, and 8 were analyzed in phase I, and samples from time 0 and days 3, 7, 14, 21, 28, 35, and 42 were analyzed in phase II. In phases I and II, there was no quantifiable transference of chlorhexidine to milk in untreated mammary gland quarters. Measurable chlorhexidine residues were found in milk from treated mammary gland quarters of 2 cows throughout the 42-day sample period in phase II. Estimated mean elimination half-life for chlorhexidine in milk was 11.5 days.
Metabolism / Metabolites
As chlorhexidine is very poorly absorbed in the gastrointestinal tract, it is unlikely to undergo metabolic conversion to any significant extent.
Biological Half-Life
To evaluate the elimination kinetics of chlorhexidine in milk when used as an intramammary infusion to stop lactation in cows. ... The study was performed in 2 phases. Three cows were studied in each phase. All cows were treated with chlorhexidine suspension by infusion into a mastitic mammary gland quarter after 2 milkings 24 hours apart. Foremilk samples (100 mL) were collected from treated and untreated (controls) mammary gland quarters of each cow. Chlorhexidine was extracted from raw milk, and residue concentrations were quantified by use of high-performance liquid chromatography. Foremilk samples from days 2, 5, and 8 were analyzed in phase I, and samples from time 0 and days 3, 7, 14, 21, 28, 35, and 42 were analyzed in phase II. In phases I and II, there was no quantifiable transference of chlorhexidine to milk in untreated mammary gland quarters. Measurable chlorhexidine residues were found in milk from treated mammary gland quarters of 2 cows throughout the 42-day sample period in phase II. Estimated mean elimination half-life for chlorhexidine in milk was 11.5 days.
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
IDENTIFICATION AND USE: Chlorhexidine forms solid crystals. Chlorhexidine diacetate is registered for current use in the U.S., but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses. Currently, two end-use products with 2% chlorhexidine diacetate are registered for use as hard surface-treatment disinfectant/virucides. Chlorhexidine is used primarily as its salts e.g., the dihydrochloride, diacetate, and digluconate in disinfectants (disinfection of the skin and hands), cosmetics (additive to creams, toothpaste, deodorants, and antiperspirants), and pharmaceutical products (preservative in eyedrops, active substance in wound dressings and antiseptic mouthwashes). HUMAN EXPOSURE AND TOXICITY: Chlorhexidine diacetate is highly acutely toxic when applied to the eye. Skin reactions to chlorhexidine-acetate and chlorhexidine-gluconate were tested among eczema patients. Positive reactions were found in 52 (5.4%) of the 1,063 subjects at the initial test. Of these subjects, 29 were retested, and 21 were still found to have positive reactions. Chlorhexidine specific IgE was detected only in Japanese individuals who had experienced anaphylactic type reactions and was not detected in Japanese nurses and patients or in a group of British nurses and hospital staff, all having regular contact with chlorhexidine. All chromogens plus chlorhexidine, but not chlorhexidine alone, produced some discoloration of hydroxyapatite and human teeth. A 67-yr-old man undergoing a colectomy for colon cancer was unintentionally administered 0.8 mg of chlorhexidine gluconate intravenously and subsequently developed acute respiratory distress syndrome. Occupational asthma has been described in two health care workers, as a result of exposure to chlorhexidine and alcohol aerosols. Another case report describes six patients who developed urticaria, dyspnea, and anaphylactic shock due to topical application of chlorhexidine gluconate solution. Even very dilute solutions of chlorhexidine can cause marked chondrolysis of articular cartilage leading to severe permanent damage to the knee. ANIMAL STUDIES: Rabbits suffered severe ocular irritation with chlorhexidine acetate treatment. No dermal irritation was reported up to 72 hours following test article treatment in rabbits. In developmental studies no observable malformations or developmental toxicity were found at any dose level tested. Both positive and negative results have been seen in bacterial studies of the mutagenic effects of chlorhexidine; however, no mutagenic activity was seen in an in-vivo micronucleus assay or a mammalian cytogenic test using Chinese-hamster-ovary cells. No carcinogenic effects were seen in a long term animal study.
Interactions
Chlorhexidine increases the activity of itraconazole against Candida isolates; itraconazole-chlorhexidine combinations show synergistic activity in culture media.
Non-Human Toxicity Values
LD50 Rat oral 5,000 mg/kg
LD50 Rat (male) oral 1710 mg/kg /Chlorhexidine diacetate/
LD50 Rat (female) oral 1180 mg/kg /Chlorhexidine diacetate/
LD50 Rabbit dermal >2000 mg/kg /Chlorhexidine diacetate/
For more Non-Human Toxicity Values (Complete) data for CHLORHEXIDINE (6 total), please visit the HSDB record page.
其他信息
Chlorhexidine hydrochloride is a member of guanidines.
Chlorhexidine is a broad-spectrum antimicrobial biguanide used as a topical antiseptic and in dental practice for the treatment of inflammatory dental conditions caused by microorganisms. It is one of the most common skin and mucous membrane antiseptic agents in use today. The molecule itself is a cationic bis-guanide consisting of two 4-chlorophenyl rings and two biguanide groups joined by a central hexamethylene chain. Topical chlorhexidine for disinfection, as well as oral rinses for dental use, carries activity against a broad range of pathogens including bacteria, yeasts, and viruses. Chlorhexidine was developed in the UK by Imperial Chemical Industries in the early 1950s and was introduced to the US in the 1970s. The FDA withdrew its approval for the use of chlorhexidine gluconate topical tincture 0.5%, due to a significant number of reports concerning chemical and thermal burns associated with the use of this product. Other formulations of chlorhexidine continue to be available.
Chlorhexidine is a biguanide compound used as an antiseptic agent with topical antibacterial activity. Chlorhexidine is positively charged and reacts with the negatively charged microbial cell surface, thereby destroying the integrity of the cell membrane. Subsequently, chlorhexidine penetrates into the cell and causes leakage of intracellular components leading to cell death. Since gram positive bacteria are more negatively charged, they are more sensitive to this agent.
A disinfectant and topical anti-infective agent used also as mouthwash to prevent oral plaque.
Drug Indication
Chlorhexidine is available over-the-counter in various formulations (e.g. solution, sponge, cloth, swab) as a topical antiseptic to sanitize prior to surgeries and/or medical procedures. Dental formulations, available by prescription only, include an oral rinse indicated for the treatment of gingivitis and a slow-release "chip" which is inserted into periodontal pockets and is indicated for the reduction of pocket depth in adult patients with periodontitis as an adjunct therapy to dental scaling and root planing procedures.
FDA Label
Mechanism of Action
Chlorhexidine’s broad-spectrum antimicrobial effects are due to its ability to disrupt microbial cell membranes. The positively charged chlorhexidine molecule reacts with negatively charged phosphate groups on microbial cell surfaces - this reaction both destroys the integrity of the cell, allowing leakage of intracellular material, and allows chlorhexidine to enter the cell, causing precipitation of cytoplasmic components and ultimately cell death. The specific means of cell death is dependent on the concentration of chlorhexidine - lower concentrations are bacteriostatic and result in leakage of intracellular substances such as potassium and phosphorous, whereas higher concentrations are bactericidal and cause cytoplasmic precipitation.
Therapeutic Uses
Antiseptic; disinfectant. (Vet): antiseptic; disinfectant.
Cleanser: As a surgical hand scrub, skin wound and general skin cleanser, health care personnel hand wash, and for preoperative skin preparation. Chlorhedine gluconate significantly reduces the number of microorganisms on the hands and forearms prior to surgery or patient care. /Chlorhexidine gluconate-topical/
EXPL THER To determine if chlorhexidine can be used as an intervention to prolong the time to relapse of oral candidiasis. SUBJECTS AND METHODS: A double-blinded randomized clinical trial was performed in 75 HIV/AIDS subjects with oral candidiasis. Clotrimazole troche was prescribed, and the subjects were re-examined every 2 weeks until the lesions were completely eradicated. The subjects were then randomly divided into two groups; 0.12% chlorhexidine (n = 37, aged 22-52 years, mean 34 years) and 0.9% normal saline (n = 38, aged 22-55 years, mean 38 years). They were re-examined every 2 weeks until the next episode was observed. RESULTS: The time to recurrence of oral candidiasis between the chlorhexidine and the saline group was not statistically significant (P > 0.05). The following variables were significantly associated with the time of recurrence; frequency of antifungal therapy (P = 0.011), total lymphocyte (P = 0.017), alcohol consumption (P = 0.043), and candidiasis on gingiva (P = 0.048). The subjects with lower lymphocyte showed shorter oral candidiasis-free periods (P = 0.034). CONCLUSIONS: Chlorhexidine showed a small but not statistically significant effect in maintenance of oral candidiasis-free period. This lack of significance may be due to the small sample size. Further study should be performed to better assess the size of the effect, or to confirm our findings.
/EXPTL Therapy:/ Rats were injected with 10 mg/kg azoxymethane sc weekly for 12 weeks to induce colorectal cancers. At 20 weeks, subtotal colectomies were performed on rats with colorectal tumors and without peritoneal implants or liver metastases. At the time of surgery, a cut portion of the tumor was placed in the abdomen for 30 minutes; the rats then randomly received peritoneal irrigation with chlorhexidine, or sterile water (control). Eight weeks postoperatively a necropsy was performed. At that time, obvious and suspected recurrences and the anastomotic area were sampled for histologic evaluation. Significant differences were seen with chlorhexidine vs. water for gross tumor (P=0.05) and microscopic tumor (P<0.05).
Drug Warnings
For external use only: For external use only. Keep out of eyes, ears, and mouth. Chlorhexidine gluconate should not be used as a preoperative skin preparation of the face or head. Misuse of products containing chlorhexidine gluconate has been reported to cause serious and permanent eye injury when it has been permitted to enter and remain in the eye during surgical procedures. If chlohexidine gluconate should contact these areas, rinse out promptly and thoroughly with cold water. Avoid contact with neninges. Do not use in genital area. /Chlorhexidine gluconate-topical/
Sensitivity: Chlorhexidine gluconate should not be used by persons who have a sensitivity to it or its components.
Hypersensitivity reactions: Irritation, sensitization, and generalized allergic reactions have been reported with chlorhexidine-containing products, especially in the genital areas. If adverse reactions occur and last more than 72 hr, discontinue use immediately and, if severe, contact a health care provider.
Deafness: Chlorhexidine gluconate has been reported to cause deafness when instilled in the middle ear through perforate ear drums. /Chlorhexidine gluconate-topical/
For more Drug Warnings (Complete) data for CHLORHEXIDINE (8 total), please visit the HSDB record page.
Pharmacodynamics
Chlorhexidine is a broad-spectrum antimicrobial with demonstrated activity against both gram-positive and gram-negative bacteria, yeasts, and viruses. Antimicrobial activity is dose-dependent - chlorhexidine is bacteriostatic at lower concentrations (0.02%-0.06%) and bactericidal at higher concentrations (>0.12%). Pharmacokinetic studies of oral chlorhexidine rinses indicate that approximately 30% of the active ingredient is retained in the mouth following rinsing, which is subsequently slowly released into oral fluids. This ability to adsorb to dentine, shared with tetracycline antibiotics such as [doxycycline], is known as "substantivity" and is the result of chlorhexidine's positive charge - it is likely that this substantivity plays at least some role in chlorhexidine's antimicrobial activity, as its persistence on surfaces such as dentine prevent microbial colonization. Dental chlorhexidine rinses may result in staining of oral surfaces, such as teeth. This effect is not ubiquitous and appears to be more significant with extended therapy (i.e. up to 6 months) - nevertheless, patients for whom oral staining is unacceptable should use chlorhexidine rinse with caution and for the shortest effective interval. Allergic reactions to chlorhexidine have been associated with the development of anaphylaxis.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C22H32CL4N10
分子量
578.3685
精确质量
576.156
CAS号
3697-42-5
相关CAS号
Chlorhexidine (digluconate);18472-51-0;Chlorhexidine;55-56-1;Chlorhexidine diacetate;56-95-1;Chlorhexidine-d8 dihydrochloride;2012598-75-1
PubChem CID
9571016
外观&性状
Crystals from methanol
Solid
沸点
699.3ºC at 760mmHg
熔点
255-262 ºC
闪点
376.7ºC
LogP
7.887
tPSA
167.58
氢键供体(HBD)数目
8
氢键受体(HBA)数目
2
可旋转键数目(RBC)
13
重原子数目
36
分子复杂度/Complexity
649
定义原子立体中心数目
0
SMILES
ClC1C([H])=C([H])C(=C([H])C=1[H])N([H])/C(/N([H])[H])=N/C(/N([H])[H])=N/C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/N=C(\N([H])[H])/N=C(\N([H])[H])/N([H])C1C([H])=C([H])C(=C([H])C=1[H])Cl.Cl[H].Cl[H]
InChi Key
WJLVQTJZDCGNJN-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H30Cl2N10.2ClH/c23-15-5-9-17(10-6-15)31-21(27)33-19(25)29-13-3-1-2-4-14-30-20(26)34-22(28)32-18-11-7-16(24)8-12-18;;/h5-12H,1-4,13-14H2,(H5,25,27,29,31,33)(H5,26,28,30,32,34);2*1H
化学名
(1E)-2-[6-[[amino-[(E)-[amino-(4-chloroanilino)methylidene]amino]methylidene]amino]hexyl]-1-[amino-(4-chloroanilino)methylidene]guanidine;dihydrochloride
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~20.83 mg/mL (~36.02 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (3.60 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (3.60 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (3.60 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.7290 mL 8.6450 mL 17.2900 mL
5 mM 0.3458 mL 1.7290 mL 3.4580 mL
10 mM 0.1729 mL 0.8645 mL 1.7290 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们