规格 | 价格 | 库存 | 数量 |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
靶点 |
20S proteasome (IC50 = 2.5 μM)
|
---|---|
体外研究 (In Vitro) |
体外活性:雷公藤红醇在 5 μM 浓度时,可分别抑制纯化 20S 蛋白酶体的胰凝乳蛋白酶样活性、PGPH 样活性和胰蛋白酶样活性,分别达 80%、5% 和 <1%,而 10 μM 浓度时,它会抑制这些活性。三种蛋白酶体活性分别提高约 90%、15% 和 <1%。 Celastrol 以浓度依赖性方式显着抑制 PC-3 细胞中蛋白酶体胰凝乳蛋白酶的活性。 2.5 μM 至 5 μM 的雷公藤红素可在 PC-3 细胞中诱导 caspase-3 活性提高 4.7 倍至 5.5 倍。雷公藤红醇(5 μM)处理的细胞,1小时后蛋白酶体靶蛋白IκB-α和Bax的水平升高,并在4小时至12小时内进一步升高至峰值。 LNCaP 细胞中胰凝乳蛋白酶样活性水平降低和泛素化蛋白积累增加表明,雷公藤红醇 (2.5 μM) 处理可诱导蛋白酶体抑制 40%。 Celastrol (2.5 μM) 诱导经 Celastrol 处理的 LNCaP 细胞凋亡,如 caspase-3 活性水平升高(高达 3.5 倍)、PARP 裂解和凋亡形态所示。研究发现 Celastrol (300 nM) 可抑制 LPS 诱导的人单核细胞和巨噬细胞产生 TNF-α 和 IL-1β。雷公藤红醇 (100 nM) 还可降低 LPS 诱导的小胶质细胞 II 类 MHC 分子的表达。 Celastrol 强烈抑制巨噬细胞谱系细胞中 LPS 和 IFN-y 诱导的 NO 产生,IC50 为 200 nM。 Celastrol 强烈抑制内皮细胞中 TNF-α 和 IFN-γ 诱导的 NO 产生,IC50 为 200 nM。激酶测定:将纯化的兔 20S 蛋白酶体 (0.1 μg) 与 40 μM 各种荧光肽底物在 100 μL 测定缓冲液 (20 mM Tris-HCl (pH 7.5)) 中在不同浓度的雷公藤红素存在下或在溶剂DMSO在37℃下反应2小时,然后测量对每种蛋白酶体活性的抑制。细胞测定:通过MTT摄取法测定雷公藤红素对各种人肿瘤细胞系的抗增殖作用。简而言之,将5×103个细胞与雷公藤红素一起在96孔板中于37℃下孵育三次。然后将 MTT 溶液添加到每个孔中。 37 ℃孵育2小时后,加入提取缓冲液(20% SDS、50%二甲基甲酰胺),细胞在37 ℃孵育过夜,然后使用Tecan酶标仪在570 nm处测量光密度。
|
体内研究 (In Vivo) |
Celastrol (3 mg/kg) 可显着抑制携带 PC-3 肿瘤的雄性裸鼠的肿瘤生长(高达 70%),与 p27 水平和 Bax 水平升高相关。 Celastrol (3 mg/kg) 导致携带 PC-3 肿瘤的雄性裸鼠的肿瘤中出现更多的肿瘤细胞凋亡,并出现各种 PARP 裂解片段。雷公藤红醇 (3 mg/kg) 可抑制 35% 的肿瘤,与携带 C4-2B 肿瘤的裸鼠中蛋白酶体活性降低和 AR 蛋白表达降低相关。研究发现雷公藤红醇 (3 mg/kg) 可强烈抑制小鼠的关节肿胀和佐剂性关节炎的其他表现。 Celastrol (0.2 mg/kg) 显着改善大鼠的记忆、学习和精神运动活动测试的表现。
|
酶活实验 |
将已纯化的兔 20S 蛋白酶体 (0.1 μg) 在含有 40 μM 不同荧光肽底物的测定缓冲液 (20 mM Tris-HCl,pH 7.5) 中于 37 °C 保存两小时。添加不同浓度的雷公藤红素或将蛋白酶体溶解在 DMSO 中。然后测量每种蛋白酶体活性的抑制量。
雷公藤红素是一种从药用植物雷公藤中提取的醌类甲基三萜,已被用于治疗慢性炎症和自身免疫性疾病,但其作用机制尚不清楚。因此,我们研究了雷公藤红素对TNF(一种强效的促炎细胞因子)激活的细胞反应的影响。雷公藤红素可增强TNF和化疗药物诱导的细胞凋亡,抑制细胞侵袭,二者均受NF-kappaB激活的调控。我们发现TNF诱导了参与抗凋亡(IAP1、IAP2、Bcl-2、Bcl-XL、c-FLIP和survivin)、增殖(cyclin D1和COX-2)、侵袭(MMP-9)和血管生成(VEGF)的基因产物的表达,而celastrol治疗抑制了它们的表达。由于这些基因产物是由NF-kappaB调节的,我们假设雷公酚通过调节NF-kappaB途径介导其作用。我们发现雷公藤红素抑制诱导型和组成型NF-kappaB激活。研究发现,Celastrol可抑制tnf诱导的ikappabα激酶活化、ikappabα磷酸化、ikappabα降解、p65核易位和磷酸化以及nf - kappab介导的报告基因表达。最近的研究表明,tnf诱导的IKK激活需要TAK1的激活,我们确实发现celastrol抑制TAK1诱导的NF-kappaB激活。总的来说,我们的研究结果表明,celastrol通过抑制NF-kappaB途径增强tnf诱导的细胞凋亡并抑制侵袭。[3] 雷公藤红素是一种具有抗炎和抗癌作用的植物三萜,近年来引起了人们的广泛关注。在本报告中,我们研究了雷公藤红素对多种癌细胞增殖的影响。本文还详细探讨了该三萜发挥其凋亡作用的机制。我们发现,在低至1 μM的浓度下,celastrol可以抑制多种人类肿瘤细胞类型的增殖,包括多发性骨髓瘤、肝癌、胃癌、前列腺癌、肾细胞癌、头颈癌、非小细胞肺癌、黑色素瘤、胶质瘤和乳腺癌。celastrol的生长抑制作用与cyclin D1和cyclin E水平的降低相关,但与p21和p27水平的升高相关。celastrol通过激活caspase-8、bid切割、caspase-9激活、caspase-3激活、PARP切割以及下调抗凋亡蛋白来诱导细胞凋亡。celastrol的凋亡作用是通过激活JNK和下调Akt的激活来实现的。celastrol诱导的细胞凋亡需要JNK,药理抑制剂抑制JNK可消除细胞凋亡作用。综上所述,我们的研究结果表明,celastrol可以通过激活JNK,抑制Akt,下调抗凋亡蛋白的表达来抑制细胞增殖,诱导细胞凋亡。[4] |
细胞实验 |
MTT摄取法测定雷公藤红素对不同人肿瘤细胞系的抗增殖作用。在 96 孔板中,将 5×103 细胞与雷公藤红素一起在 37 °C 下孵育三次。之后,将MTT溶液添加至每孔中。在 37°C 下孵育两小时后,用提取缓冲液(20% SDS、50% 二甲基甲酰胺)处理细胞,并在 37°C 下再孵育一晚。然后使用 Tecan 读板器在 570 nm 处测量光密度。
|
动物实验 |
Mice: Five-week-old male NCRNU-M nude immunodeficient mice are utilized. Day 0 involves the subcutaneous injection of human prostate cancer PC-3 or C4-2B cells (5-10×106) suspended in 0.1 mL of serum-free RPMI 1640 into the right flank of each mouse (four mice per group). On day 14 following inoculation, the animals in the first PC-3 cell experiment began receiving daily intraperitoneal injections (i.p.) of either 1.0 or 3.0 mg/kg of Celastrol or 50 to 100 μL of a vehicle (10% DMSO, 70% Cremophor/ethanol (3:1), and 20% PBS). Every day, tumor sizes are measured with calipers, and their volumes are computed using a standard formula: width2×length/2. Weekly measurements are made of body weight. Once three days of treatment are up, one control and one 3.0 mg/kg Celastrol-treated mouse is sacrificed to investigate whether the proteasome is inhibited early in the experiment. Upon reaching 1,400 mm3, the control tumors, the remaining ones are killed after 16 days of treatment. In the subsequent PC-3 tumor experiment, mice are randomized into three groups 12 days post-inoculation and administered 1.5 mg/kg daily oral cetonin, control, or cetonin for the full 31-day study period. Nude mice with C4-2B tumors are given daily intraperitoneal injections (i.p.) of either the vehicle or 3.0 mg/kg Celastrol in order to investigate the effects of the drug on AR expression.
Rats: Ninety male Sprague-Dawley (SD) rats, weighing 161±9 g at six weeks of age, are randomly assigned to the high energy diet (HED) and control groups. Rats in the HED group are fed an additional high energy emulsion, while those in the control group are fed a standard chow diet. In order to create a model of type 2 diabetes, rats in the HED group receive an injection of streptozotocin (STZ; 45 mg/kg) dissolved in 0.1 mol/l citrate buffer (pH 4.5) into their caudal vein, whereas rats in the control group receive an injection of sodium citrate buffer. The rats used as the diabetes model are those whose blood glucose levels are ≥16.7 mM seven days after receiving the STZ injection. Rats injected with STZ exhibited these characteristics in 80% of cases on average. Two weeks after the STZ injection, the rats that developed diabetes successfully are split into four groups at random: the diabetes model (DM) group, the middle-dose group (1 mg/kg/day), the high-dose group (6 mg/kg/day) of Celastrol, and the diabetes model (n = 15 rats/group). When compared to the rats in the NC and DM groups, which receive an equivalent volume of distilled water (2 mL), the treatment groups' rats receive Celastrol by gavage. Rats are given an intraperitoneal injection of sodium pentobarbital (30 mg/kg body weight) to induce anesthesia after 8 weeks of the regimen, and tissue samples are taken for examination. The paravertebral muscle is removed from the rat bodies, cut perpendicular to the longitudinal axis, and preserved in 20% formaldehyde that has been buffered with phosphate. After that, 5 μm histological paraffin-embedded sections are ready for H&E staining. The liquid nitrogen-snap-frozen paravertebral muscle sections are kept at?80°C for future examination. |
参考文献 | |
其他信息 |
Celastrol is a pentacyclic triterpenoid that is 24,25,26-trinoroleana-1(10),3,5,7-tetraen-29-oic acid bearing an oxo substituent at position 2, a hydroxy substituent at position 3 and two methyl groups at positions 9 and 13. An antioxidant and anti-inflammatory agent. Potently inhibits lipid peroxidation in mitochondria and inhibits TNF-alpha-induced NFkappaB activation. Also shown to inhibit topoisomerase II activity in vitro (IC50 = 7.41 muM). It has a role as an antioxidant, an anti-inflammatory drug, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an antineoplastic agent, a Hsp90 inhibitor and a metabolite. It is a pentacyclic triterpenoid and a monocarboxylic acid.
Celastrol has been reported in Celastrus paniculatus, Tripterygium wilfordii, and other organisms with data available. |
分子式 |
C29H38O4
|
|
---|---|---|
分子量 |
450.61
|
|
精确质量 |
450.277
|
|
元素分析 |
C, 77.30; H, 8.50; O, 14.20
|
|
CAS号 |
34157-83-0
|
|
相关CAS号 |
Pristimerin;1258-84-0; 34157-83-0 (castrol); 193957-88-9 (dihydrocelastrol)
|
|
PubChem CID |
122724
|
|
外观&性状 |
Orange to red solid powder
|
|
密度 |
1.2±0.1 g/cm3
|
|
沸点 |
645.7±55.0 °C at 760 mmHg
|
|
熔点 |
185-200ºC
|
|
闪点 |
358.3±28.0 °C
|
|
蒸汽压 |
0.0±4.4 mmHg at 25°C
|
|
折射率 |
1.602
|
|
LogP |
7.08
|
|
tPSA |
74.6
|
|
氢键供体(HBD)数目 |
2
|
|
氢键受体(HBA)数目 |
4
|
|
可旋转键数目(RBC) |
1
|
|
重原子数目 |
33
|
|
分子复杂度/Complexity |
1100
|
|
定义原子立体中心数目 |
6
|
|
SMILES |
CC1=C(C(=O)C=C2C1=CC=C3
|
|
InChi Key |
KQJSQWZMSAGSHN-JJWQIEBTSA-N
|
|
InChi Code |
InChI=1S/C29H38O4/c1-17-18-7-8-21-27(4,19(18)15-20(30)23(17)31)12-14-29(6)22-16-26(3,24(32)33)10-9-25(22,2)11-13-28(21,29)5/h7-8,15,22,31H,9-14,16H2,1-6H3,(H,32,33)/t22-,25-,26-,27+,28-,29+/m1/s1
|
|
化学名 |
(2R,4aS,6aR,6aS,14aS,14bR)-10-hydroxy-2,4a,6a,6a,9,14a-hexamethyl-11-oxo-1,3,4,5,6,13,14,14b-octahydropicene-2-carboxylic acid
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.55 mM) (饱和度未知) in 10% DMSO + 40% PEG300 +5% Tween-80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80+,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2192 mL | 11.0961 mL | 22.1921 mL | |
5 mM | 0.4438 mL | 2.2192 mL | 4.4384 mL | |
10 mM | 0.2219 mL | 1.1096 mL | 2.2192 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT05413226 | Recruiting | Dietary Supplement: Celastrol | Safety Issues | Legend Labz, Inc. | September 28, 2021 | Not Applicable |
NCT05494112 | Recruiting | Dietary Supplement: Celastrol | Safety | Legend Labz, Inc. | May 25, 2022 | Not Applicable |