CCG-1423

别名: CCG1423; CCG-1423; n-(2-(4-chloroanilino)-1-methyl-2-oxoethoxy)-3,5-bis(trifluoromethyl)benzamide; C18H13ClF6N2O3; N-[1-(4-chloroanilino)-1-oxopropan-2-yl]oxy-3,5-bis(trifluoromethyl)benzamide; N-((1-((4-chlorophenyl)amino)-1-oxopropan-2-yl)oxy)-3,5-bis(trifluoromethyl)benzamide; CCG 1423 CCG-1423 ;N-({1-[(4-氯苯基)氨基]-1-氧代-2-丙基}氧基)-3,5-二(三氟甲基)苯甲酰胺; N-[2-[(4-氯苯基)氨基]-1-甲基-2-氧代乙氧基]-3,5-二(三氟甲基)苯甲酰胺
目录号: V1567 纯度: ≥98%
CCG-1423 (CCG1423;CCG 1423) 是一种新型、有效、特异性的 RhoA 信号通路小分子抑制剂,具有潜在的抗肿瘤活性。
CCG-1423 CAS号: 285986-88-1
产品类别: Rho
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of CCG-1423:

  • (S)-CCG-1423
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
CCG-1423 (CCG1423; CCG 1423) 是一种新型、有效、特异性的 RhoA 信号通路小分子抑制剂,具有潜在的抗肿瘤活性。它抑制 SRF 介导的转录。 CCG-1423 在多种体外癌细胞功能测定中显示出活性。 CCG-1423 有效 (<1 mumol/L) 抑制 PC-3 前列腺癌细胞中溶血磷脂酸诱导的 DNA 合成,并且在纳摩尔浓度下抑制 RhoC 过度表达的黑色素瘤系(A375M2 和 SK-Mel-147)的生长,它在表达较低水平 Rho 的相关品系(A375 和 SK-Mel-28)上活性较低。
生物活性&实验参考方法
靶点
Rho-pathway selective serum response element-luciferase reporter (IC50 = 1.5 µM)
体外研究 (In Vitro)
体外活性:CCG-1423 选择性抑制 Rho 通路信号激活的 SRF 介导的转录,并特异性抑制 LPA 刺激的 DNA 合成。 CCG-1423 还选择性抑制 RhoC 过表达黑色素瘤细胞(A375M2 和 SK-Mel-147)的增殖,并强烈抑制 PC-3 细胞的 Rho 依赖性侵袭。 CCG-1423 与 LY294002 组合可增强小鼠胚胎干细胞通过 BMP7 阳性细胞分化为中间中胚层。在 H9c2 细胞中,CCG-1423 抑制 MRTF 核定位,并完全阻断 STARS 近端报告基因活性。 CCG-1423 作为 Rho/MRTF/SRF 通路抑制剂,还可抑制人结肠肌成纤维细胞中的基质硬度和 TGF-β 诱导的纤维形成。激酶测定:CCG-1423 具有纳摩尔至低微摩尔的效力以及对 Rho 过度表达和侵袭性癌细胞系的选择性,从而抑制 DNA 合成、细胞生长和/或侵袭。 CCG-1423 增强了高度转移性 RhoC 过度表达的 A375M2 黑色素瘤细胞系中的 Caspase-3 激活,而亲本 A375 细胞系中的 Caspase-3 激活程度较小,而柔红霉素则观察到相反的模式。细胞测定:将正常培养基中的细胞(每孔 2,000 个)铺板于涂有层粘连蛋白的 96 孔板中。贴壁后,将培养基更换为含 30 μmol/L LPA(含或不含 300 nM CCG-1423)的无血清培养基(0% FBS)。在第 5 天添加含有或不含 CCG-1423 的新鲜 LPA,以确保整个实验过程中存在 LPA 和化合物。第 8 天,将 WST-1 试剂添加到孔中 1 小时,并使用 Victor 读板器读取 450 nm 处的吸光度。
体内研究 (In Vivo)
CCG-1423的药理学SRF抑制降低了体内胰岛素抵抗小鼠的核MKL1,改善了葡萄糖摄取和耐受。[6]
研究了MKL1抑制剂CCG-142330对小鼠IRI的影响。当小鼠在IR手术前3天腹膜注射CCG-1423时,CCG-1423注射导致梗死面积显著减小,但心脏功能没有明显改善(图一)。当小鼠在IR手术前连续2周每天注射CCG-1423时,发现CCG-1423的长期预处理不仅减轻了心肌梗死(图1E),还减轻了心功能的丧失(图1F至1H)。两种CCG方案有效性的差异可以部分解释为,尽管与赋形剂组相比,2周的CCG注射几乎完全阻断了心脏巨噬细胞中MKL1的核积聚,但3天的注射仅略微改变了MKL1的定位(图二)。综上所述,这些数据表明,MKL1功能丧失可能会减轻心肌梗死,并有助于恢复IRI后的心功能丧失。[5]
酶活实验
CCG-1423 对 Rho 过度表达和侵袭性癌细胞系具有选择性,在抑制 DNA 合成、细胞生长和/或侵袭方面显示出纳摩尔至低微摩尔的效力。尽管亲代 A375 细胞系显示出 Caspase-3 激活的较小增加,但柔红霉素在高度转移性 RhoC 过表达的 A375M2 黑色素瘤细胞系中显示出完全相反的模式。
细胞实验
在涂有层粘连蛋白的 96 孔板中,每孔铺有 2,000 个正常培养基中的细胞。附着后,将培养基更换为含有 30 μmol/L LPA 的无血清培养基 (0% FBS),结合或不结合 300 nM CCG-1423。为了保证 LPA 和化合物在实验期间存在,在第 5 天添加新鲜 LPA(含或不含 CCG-1423)。在第 8 天,向孔中加入 WST-1 试剂一小时,并使用 Victor 酶标仪测量 450 nm 处的吸光度。
动物实验
Mice were housed 4 per cage in an Office of Laboratory Animal Welfare–certified animal facility, with a 12-hour light/12-hour dark cycle. The Joslin Institutional Animal Care and Use Committee approved all experimental plans. Age-matched C57BL/6 males fed a chow (10% calories from fat) or HFD (60% calories from fat) from age 6 weeks were obtained from The Jackson Laboratory.[6]
For SRF inhibitor experiments, 16-week-old HFD-fed mice were treated with CCG-1423 (0.15 mg/kg/d, intraperitoneally) or vehicle alone (DMSO) for 2 weeks.[6]
N/A
Insulin-resistant mice
参考文献

[1].Mol Cancer Ther. 2007 Aug;6(8):2249-60.

[2].Biochem Biophys Res Commun. 2010 Mar 19;393(4):877-82.

[3].PLoS One. 2012;7(7):e40966.

[4].Inflamm Bowel Dis. 2014 Jan;20(1):154-65.

[5]. Circulation. 2018 Dec 11;138(24):2820-2836.
[6]. J Clin Invest. 2011 Mar;121(3):918-29. doi: 10.1172/JCI41940.
其他信息
Lysophosphatidic acid receptors stimulate a Galpha(12/13)/RhoA-dependent gene transcription program involving the serum response factor (SRF) and its coactivator and oncogene, megakaryoblastic leukemia 1 (MKL1). Inhibitors of this pathway could serve as useful biological probes and potential cancer therapeutic agents. Through a transcription-based high-throughput serum response element-luciferase screening assay, we identified two small-molecule inhibitors of this pathway. Mechanistic studies on the more potent CCG-1423 show that it acts downstream of Rho because it blocks SRE.L-driven transcription stimulated by Galpha(12)Q231L, Galpha(13)Q226L, RhoA-G14V, and RhoC-G14V. The ability of CCG-1423 to block transcription activated by MKL1, but not that induced by SRF-VP16 or GAL4-VP16, suggests a mechanism targeting MKL/SRF-dependent transcriptional activation that does not involve alterations in DNA binding. Consistent with its role as a Rho/SRF pathway inhibitor, CCG-1423 displays activity in several in vitro cancer cell functional assays. CCG-1423 potently (<1 mumol/L) inhibits lysophosphatidic acid-induced DNA synthesis in PC-3 prostate cancer cells, and whereas it inhibits the growth of RhoC-overexpressing melanoma lines (A375M2 and SK-Mel-147) at nanomolar concentrations, it is less active on related lines (A375 and SK-Mel-28) that express lower levels of Rho. Similarly, CCG-1423 selectively stimulates apoptosis of the metastasis-prone, RhoC-overexpressing melanoma cell line (A375M2) compared with the parental cell line (A375). CCG-1423 inhibited Rho-dependent invasion by PC-3 prostate cancer cells, whereas it did not affect the Galpha(i)-dependent invasion by the SKOV-3 ovarian cancer cell line. Thus, based on its profile, CCG-1423 is a promising lead compound for the development of novel pharmacologic tools to disrupt transcriptional responses of the Rho pathway in cancer.[1]
Embryonic stem cells (ESCs) are potentially powerful tools for regenerative medicine and establishment of disease models. The recent progress in ESC technologies is noteworthy, but ESC differentiation into renal lineages is relatively less established. The present study aims to differentiate mouse ESCs (mESCs) into a renal progenitor pool, the intermediate mesoderm (IM), without addition of exogenous cytokines and embryoid formation. First, we treated mESCs with a combination of small molecules (Janus-associated tyrosine kinase inhibitor 1, LY294002, and CCG1423) and differentiated them into BMP7-positive cells, BMP7 being the presumed inducing factor for IM. When these cells were cultured with adding retinoic acid, expression of odd-skipped related 1 (Osr1), which is essential to IM differentiation, was enhanced. To simplify the differentiation protocol, the abovementioned four small molecules (including retinoic acid) were combined and added to the culture. Under this condition, more than one-half of the cells were positive for Osr1, and at the same time, Pax2 (another IM marker) was detected by real-time PCR. Expressions of ectodermal marker and endodermal marker were not enhanced, while mesodermal marker changed. Moreover, expression of genes indispensable to kidney development, i.e., Lim1 and WT1, was detected by RT-PCR. These results indicate the establishment of a specific, effective method for differentiation of the ESC monolayer into IM using a combination of small molecules, resulting in an attractive cell source that could be experimentally differentiated to understand nephrogenic mechanisms and cell-to-cell interactions in embryogenesis.[2]
Insulin resistance in skeletal muscle is a key phenotype associated with type 2 diabetes (T2D) for which the molecular mediators remain unclear. We therefore conducted an expression analysis of human muscle biopsies from patients with T2D; normoglycemic but insulin-resistant subjects with a parental family history (FH(+)) of T2D; and family history-negative control individuals (FH(–)). Actin cytoskeleton genes regulated by serum response factor (SRF) and its coactivator megakaryoblastic leukemia 1 (MKL1) had increased expression in T2D and FH(+) groups. Furthermore, striated muscle activator of Rho signaling (STARS), an activator of SRF, was upregulated in T2D and FH(+) and was inversely correlated with insulin sensitivity. Skeletal muscle from insulin-resistant mice recapitulated this gene expression pattern and showed reduced G-actin and increased nuclear localization of MKL1, each of which regulates SRF activity. Overexpression of MKL1 or reduction in G-actin decreased insulin-stimulated Akt phosphorylation, whereas reduction of STARS expression increased insulin signaling and glucose uptake. Pharmacological SRF inhibition by CCG-1423 reduced nuclear MKL1 and improved glucose uptake and tolerance in insulin-resistant mice in vivo. Thus, SRF pathway alterations are linked to insulin resistance, may contribute to T2D pathogenesis, and could represent therapeutic targets.[6]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C18H13CLF6N2O3
分子量
454.75
精确质量
454.051
元素分析
C, 47.54; H, 2.88; Cl, 7.80; F, 25.07; N, 6.16; O, 10.55
CAS号
285986-88-1
相关CAS号
(S)-CCG-1423;2319939-24-5
PubChem CID
2726015
外观&性状
White to off-white solid powder
密度
1.5±0.1 g/cm3
折射率
1.525
LogP
6.59
tPSA
70.92
氢键供体(HBD)数目
2
氢键受体(HBA)数目
9
可旋转键数目(RBC)
5
重原子数目
30
分子复杂度/Complexity
586
定义原子立体中心数目
0
SMILES
ClC1C([H])=C([H])C(=C([H])C=1[H])N([H])C(C([H])(C([H])([H])[H])ON([H])C(C1C([H])=C(C(F)(F)F)C([H])=C(C(F)(F)F)C=1[H])=O)=O
InChi Key
DSMXVSGJIDFLKP-UHFFFAOYSA-N
InChi Code
InChI=1S/C18H13ClF6N2O3/c1-9(15(28)26-14-4-2-13(19)3-5-14)30-27-16(29)10-6-11(17(20,21)22)8-12(7-10)18(23,24)25/h2-9H,1H3,(H,26,28)(H,27,29)
化学名
N-[1-(4-chloroanilino)-1-oxopropan-2-yl]oxy-3,5-bis(trifluoromethyl)benzamide
别名
CCG1423; CCG-1423; n-(2-(4-chloroanilino)-1-methyl-2-oxoethoxy)-3,5-bis(trifluoromethyl)benzamide; C18H13ClF6N2O3; N-[1-(4-chloroanilino)-1-oxopropan-2-yl]oxy-3,5-bis(trifluoromethyl)benzamide; N-((1-((4-chlorophenyl)amino)-1-oxopropan-2-yl)oxy)-3,5-bis(trifluoromethyl)benzamide; CCG 1423
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~90 mg/mL (~197.9 mM)
Water: <1 mg/mL
Ethanol: ~4 mg/mL(~8.8 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.50 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (5.50 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.1990 mL 10.9951 mL 21.9901 mL
5 mM 0.4398 mL 2.1990 mL 4.3980 mL
10 mM 0.2199 mL 1.0995 mL 2.1990 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • CCG-1423


    Forskolin-inhibits CCN1 expression via an MKL1 and SRF-dependent mechanism.J Mol Cell Cardiol. 2014 Nov 18;79C:157-168.

  • CCG-1423


    Binding of SRF to theSTARSpromoter.C. The SRF inhibitor CCG-1423 (1 µM) abolishedSTARS−365/+60 promoter-reporter activity in H9c2 cells (n = 3 experiments, in triplicates). 2012;7(7):e40966.

相关产品
联系我们