规格 | 价格 | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
体外研究 (In Vitro) |
植物油蓖麻油 (CO) 不可食用,但广泛用作涂料、粘合剂、润滑剂、生物燃料、化妆品和可生物降解聚合物的生物资源材料。由于其适应性强的化学特性,蓖麻油被用于生物精炼、药物和医学[1]。
|
---|---|
体内研究 (In Vivo) |
蓖麻油等天然甘油三酯具有通便作用,可以帮助孕妇分娩。给予蓖麻油的野生型小鼠会在给予蓖麻油后半小时左右开始严重腹泻。通便作用的持续时间大约为两个小时[2]。
|
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
... Some absorption of its intestinal metabolites occurs before the intestine is cleared. Ricinoleate, like other anionic surfactants, reduces net absorption of fluid and electrolytes and stimulates intestinal peristalsis. Ricinoleic acid also is absorbed and metabolized like other fatty acids. Two rabbits (weight = 3 kg) were fed 6% castor oil in the diet for 18 days; fecal collection occurred during the last ten days. The utilization (uncorrected for metabolic fat) of castor oil was 92.1%, which /was/ considered to be efficient utilization. For both rabbits, the percentage of fat in the feces was 2.2%. Adult rats (number, weights, and strain not stated) received a diet containing 48.4% castor oil for 4 to 6 weeks. Control rats received stock ration only. Feces were collected from three rats on the castor oil diet. At the end of the feeding period, excised organs/tissues were ground thoroughly and samples of phospholipid fatty acids were obtained from the liver, small intestine, and muscle; glyceride fatty acids were obtained from the liver and fat depots. There was no evidence of catharsis in any of the animals. Average percentages of Ricinoleic Acid in the phospholipid fatty acids were as follows: liver (test: 1.3 +/- 0.6% [9 analyses]; controls: 1.7 +/- 1.1% [7 analyses]), small intestine (test: 4.9 +/- 1.7% [8 analyses]; controls: 6.0 +/- 4.4% [4 analyses]), and skeletal muscle (test: 3.6 +/- 2.9% [8 analyses]; controls: 4.0 +/- 1.7% [7 analyses]). The following values are average percentages of Ricinoleic Acid in glycerides and cholesterol esters: fat depots (test: 6.8 +/- 4.2% [11 analyses]; controls: 0.5 +/- 0.5% [7 analyses]) and liver (test: 7.2 +/- 2.4% [8 analyses]; controls: 5.6 +/- 4.1% [5 analyses]). /It was/ concluded that the feeding of castor oil did not lead to the appearance of significant amounts of Ricinoleic Acid in phospholipids of the small intestine, liver, and skeletal muscle, nor in glycerides of the liver. Additionally, they concluded that ricinoleic acid is a component acid of the glycerides in the fat depots, comprising 7% of the total fatty acids. The fatty acids excreted by each of three rats amounted to 2.1%, 2.2%, and 3.6% of those ingested. Total body fat in these three animals was also determined, and it was calculated that 1% to 2% of absorbed Ricinoleic Acid was deposited in the fat depots. /It was/ concluded that Ricinoleic Acid was rapidly metabolized. For more Absorption, Distribution and Excretion (Complete) data for Castor oil (7 total), please visit the HSDB record page. Metabolism / Metabolites Castor Oil is a triglyceride that is hydrolyzed in the small intestine in humans by pancreatic enzymes, leading to the release of glycerol and Ricinoleic Acid. Within the small intestine, ... pancreatic lipases hydrolyze the oil to glycerol and ricinoleic acid. Ricinoleate, like other anionic surfactants, reduces net absorption of fluid and electrolytes and stimulates intestinal peristalsis. Ricinoleic acid also is absorbed and metabolized like other fatty acids. Castor oil was administered intragastrically to germ-free and conventional rats (number not stated). Urine was collected at intervals over a 24-hr period. The following epoxydicarboxylic acids were detected in the urine of both germ-free and conventional rats: 3,6-epoxyoctanedioic acid; 3,6-epoxydecanedioic acid; and 3,6- epoxydodecanedioic acid. These acids were not detected in urine collected from the rats prior to dosing with castor oil, and they also were not detected in steam-sterilized castor oil. Results for the germ-free rat indicate that the cyclization of Ricinoleic Acid (hydroxy fatty acid in castor oil) to form an epoxy compound occurs endogenously and does not require the presence of intestinal bacteria. Castor oil (10 to 15 mL) /was administered/ orally to three healthy subjects. Urine was collected between 2 and 8 hr post dosing. The following three epoxydicarboxylic acids were excreted in the urine: 3,6-epoxyoctanedioic acid; 3,6-epoxydecanedioic acid; and 3,6-epoxydodecanedioic acid. |
毒性/毒理 (Toxicokinetics/TK) |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation Castor (Ricinus communis) beans contain triglycerides, mostly consisting of ricinoleic acid esters, and small amounts of the toxic ricin and ricine. Pressing of the beans produces castor oil and purification of the oil eliminates the ricin and ricine. Castor oil is a strong stimulant laxative. Castor beans as well as a homeopathic preparation of castor purportedly reduce milk flow, but it is also reportedly used as a galactogogue. A poultice of castor leaves is a purported galactogogue. In some parts of India, castor oil is also reportedly applied to the breasts to stimulate lactation. No scientifically valid clinical trials support any of these uses and some preparations may be toxic to the infant. Galactogogues should never replace evaluation and counseling on modifiable factors that affect milk production. No data exist on the excretion of any components of the castor plant or castor oil into breastmilk or on their safety and efficacy in nursing mothers or infants. However, little of the active ricinoleic acid is thought to be absorbed from the intestine. Because of a lack of information, other cathartics may be preferred in nursing mothers. In traditional Indian culture, castor oil has been administered to newborn infants during the first 2 to 3 days of life, often resulting in adverse effects. Administration of castor oil to newborns is dangerous and should be avoided. Dietary supplements do not require extensive pre-marketing approval from the U.S. Food and Drug Administration. Manufacturers are responsible to ensure the safety, but do not need to prove the safety and effectiveness of dietary supplements before they are marketed. Dietary supplements may contain multiple ingredients, and differences are often found between labeled and actual ingredients or their amounts. A manufacturer may contract with an independent organization to verify the quality of a product or its ingredients, but that does not certify the safety or effectiveness of a product. Because of the above issues, clinical testing results on one product may not be applicable to other products. More detailed information about dietary supplements is available elsewhere on the LactMed Web site. ◉ Effects in Breastfed Infants In rural India, castor oil has been traditionally given to infants during the first 2 to 3 days of life to clear the intestine of meconium. This practice can result in paralytic ileus and aspiration pneumonia. Severe hypoalbuminemia was also reported in a 1.5-month-old infant whose grandmother gave him castor oil daily from the fifth day of life, resulting in diarrhea and malnutrition. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Interactions The soap has protected guinea pigs against lethal doses of tetanus and diphtheria toxins. Thus, bile saponification and the formation of alkaline fatty acid esters are a normal host defense against exotoxins (protein in nature) but ineffective against endotoxins (polysaccharides). |
参考文献 |
|
其他信息 |
Castor oil appears as pale-yellow or almost colorless transparent viscous liquid with a faint mild odor and nauseating taste. Density 0.95 g / cm3. A mixture of glycerides, chiefly ricinolein (the glyceride of ricinoleic acid).
Oil obtained from seeds of Ricinus communis that is used as a cathartic and as a plasticizer. See also: Castor Oil (annotation moved to). Mechanism of Action Castor oil has been classified as a stimulant because lipolysis in small intestine liberates ricinoleic acid ... /which/ stimulates smooth muscle and inhibits the absorption of water and electrolytes resulting in fluid accumulation in vitro, but it is not known whether these changes affect fluid movement or...laxative effect in vivo. In a study involving male Crl:CD BR rats, the findings suggested that castor oil-induced diarrhea is the result of activation of NK1 and NK2 receptors by endogenous tachykinins. Therapeutic Uses Cathartics; Emollients; Pharmaceutic Aids Therapeutically, castor oil has been administered orally for its laxative action... /Former use/ Castor oil is used in cosmetics and foods and orally, parenterally, and topically in pharmaceutical formulations. It is generally regarded as a relatively nontoxic and nonirritant material when used as an excipient. ...It is usually administered only when prompt, thorough evacuation of the bowel is desired, as in preparation for certain radiological examinations. /Former/ For more Therapeutic Uses (Complete) data for Castor oil (13 total), please visit the HSDB record page. Drug Warnings Castor oil has been used therapeutically as a laxative and oral administration of large quantities may cause nausea, vomiting, colic, and severe purgation. It should not be given when intestinal obstruction is present. Castor oil is contraindicated in pregnant or menstruating women. ... Should not be taken late in the day with the expectation of sleeping. Sensitivity to castor oil when used medicinally is extremely rare. For more Drug Warnings (Complete) data for Castor oil (12 total), please visit the HSDB record page. |
分子式 |
C57H104O9
|
---|---|
分子量 |
933.45
|
精确质量 |
932.768
|
CAS号 |
8001-79-4
|
PubChem CID |
14030006
|
外观&性状 |
Colorless to light yellow liquid
|
密度 |
1.0±0.1 g/cm3
|
沸点 |
879.2±65.0 °C at 760 mmHg
|
熔点 |
-12ºC
|
闪点 |
224.1±27.8 °C
|
蒸汽压 |
0.0±0.6 mmHg at 25°C
|
折射率 |
1.490
|
LogP |
17.72
|
tPSA |
139.59
|
氢键供体(HBD)数目 |
3
|
氢键受体(HBA)数目 |
9
|
可旋转键数目(RBC) |
53
|
重原子数目 |
66
|
分子复杂度/Complexity |
1110
|
定义原子立体中心数目 |
0
|
SMILES |
O([H])C([H])(C([H])([H])/C(/[H])=C(/[H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(=O)OC([H])(C([H])([H])OC(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C(/[H])=C(/[H])\C([H])([H])C([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])O[H])=O)C([H])([H])OC(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C(/[H])=C(/[H])\C([H])([H])C([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])O[H])=O)C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H]
|
InChi Key |
ZEMPKEQAKRGZGQ-AAKVHIHISA-N
|
InChi Code |
InChI=1S/C57H104O9/c1-4-7-10-31-40-51(58)43-34-25-19-13-16-22-28-37-46-55(61)64-49-54(66-57(63)48-39-30-24-18-15-21-27-36-45-53(60)42-33-12-9-6-3)50-65-56(62)47-38-29-23-17-14-20-26-35-44-52(59)41-32-11-8-5-2/h25-27,34-36,51-54,58-60H,4-24,28-33,37-50H2,1-3H3/b34-25-,35-26-,36-27-
|
化学名 |
2,3-bis[[(Z)-12-hydroxyoctadec-9-enoyl]oxy]propyl (Z)-12-hydroxyoctadec-9-enoate
|
别名 |
CCRIS 4596; NCI-C55163; Castor Oil
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
Ethanol : ~4.55 mg/mL (~50.61 mM)
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.0713 mL | 5.3565 mL | 10.7129 mL | |
5 mM | 0.2143 mL | 1.0713 mL | 2.1426 mL | |
10 mM | 0.1071 mL | 0.5356 mL | 1.0713 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。