Bumetanide

别名: PF 1593, PF-1593, PF1593; Ro 10-6338; bumetanide; 28395-03-1; 3-(Butylamino)-4-phenoxy-5-sulfamoylbenzoic acid; Bumex; Burinex; Fordiuran; Lunetoron; Fontego; Ro-10-6338; Ro 10 6338; Trade names: Bumex or Burinex; 布美他尼;丁脲胺;丁尿胺;丁苯氧酸;布美他尼 EP标准品;布美他尼 USP标准品;布美他尼标准品;3-(氨基磺酰基)-5-(丁基氨基)-4-苯氧基苯甲酸;3-正丁胺基-4苯氧基-5-氨基磺酰苯甲酸;5-正丁氨基-4-苯氧基-3-氨基磺酰基苯甲酸;强力速效利尿剂
目录号: V4488 纯度: ≥98%
Bumetanide(也称为 Ro 10-6338;PF-1593)是一种新型、有效的 Na(+)-K(+)-2Cl(-) 协同转运蛋白 (NKCC) 抑制剂,IC50 为 0.6 uM。
Bumetanide CAS号: 28395-03-1
产品类别: NKCC
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
250mg
500mg
1g
2g
5g
Other Sizes

Other Forms of Bumetanide:

  • Bumetanide-d5 Butyl Ester (Bumetanide d5 Butyl Ester)
  • [ 2H5 ] -布美他尼标准品
  • 布美他尼钠盐
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
布美他尼(也称为 Ro 10-6338;PF-1593)是一种新型、有效的 Na(+)-K(+)-2Cl(-) 协同转运蛋白 (NKCC) 抑制剂,IC50 为 0.6 uM。布美他尼是一种属于磺酰类的袢利尿剂,用于治疗心力衰竭,常用于大剂量呋塞米无效的患者。布美他尼几乎完全被吸收(80%),并且与食物一起服用时吸收不会改变。据说它是一种更可预测的利尿剂,这意味着可预测的吸收反映在更可预测的效果中。
生物活性&实验参考方法
靶点
Na+-K+-Cl+ cotransporter (NKCC); hNKCC1A (IC50 = 0.68 μM); hNKCC2A (IC50 = 4.0 μM)
体外研究 (In Vitro)
人类 NKCC 的两种主要剪接形式 hNKCC1A 和 hNKCC2A 均被布美他尼抑制 [1]。在表达 NKCC1A 的卵母细胞中,布美他尼(0.03-100 μM;5 分钟)以剂量调节的方式抑制 86Rb+ [1]。在 HEK-293 细胞中,布美他尼抑制 NKCC2 同工型 B,IC50 值为 0.54 μM[2]。
Na(+)- k (+)-Cl(-)共转运体NKCC1在调节神经元内Cl(-)浓度中起主要作用。NKCC1功能异常与包括癫痫在内的几种脑部疾病有关。布美他尼是唯一可用的选择性NKCC1抑制剂,但也抑制NKCC2,在治疗脑部疾病时可引起严重的不良反应。因此,选择nkcc1的布美他胺衍生物将是一个理想的选择。在本研究中,我们利用非洲爪蟾卵母细胞异种表达系统,比较了布美他尼及其衍生物对NKCCs两种主要人类剪接变体hNKCC1A和hNKCC2A的影响。这些衍生物是从约5000个3-氨基-5-磺胺基苯甲酸衍生物中挑选出来的,涵盖了广泛的结构修饰和利尿作用。据我们所知,这种结构-功能关系之前还没有在NKCC1中进行过。布美他尼对hNKCC1A的半数最大抑制浓度(ic50)分别为0.68 μ m (hNKCC1A)和4.0μM (hNKCC2A),表明该药对hNKCC1A的抑制效力是hNKCC2A的6倍。布美他胺分子的侧链取代对抑制hNKCC1A的效力有不同程度的影响。这允许定义配体相互作用所需的最小结构要求。出乎意料的是,只有少数布美他胺衍生物比布美他胺更有效地抑制hNKCC1A,而且大多数也抑制hNKCC2A,两种NKCC亚型的ic50之间存在高度显著的相关性。这些数据表明,抑制NKCC1和NKCC2的结构要求相似,这使得开发对NKCC1具有高选择性的布美他尼相关化合物变得复杂。[1]
体内研究 (In Vivo)
静脉注射布美他尼(7.6-30.4 mg/kg)可防止皮肤和纹状体表观扩散系数(ADC)降低40-67%,这是水肿发展减少的标志[3]。此外,布美他尼的静脉剂量可以减少至 2 mg/kg、8 mg/kg 和 20 mg/kg [4]。
闭塞前立即静脉注射布美他尼(7.6-30.4 mg/kg)可减弱皮质和纹状体ADC比率的下降(40-67%),表明水肿形成减少。通过TTC染色,布美他尼还可减小梗死面积。这些发现表明,脑缺血时,管腔血脑屏障Na-K-Cl共转运蛋白参与了水肿的形成。[3]
布美他尼2、8、20 mg/kg静脉和口服,测定布美他尼在大鼠体内的药代动力学和药效学(n = 10-12)。研究了布美他尼在胃肠道各部位的吸收情况,以及口服布美他尼后血药浓度出现多峰的原因。静脉给药后,布美他尼的药代动力学参数t1/2(21.4、53.8 vs. 127 min)、CL(35.8、19.1 vs. 13.4 ml/min /kg)、CLNR(35.2、17.8 vs. 12.6 ml/min /kg)和VSS (392,250 vs. 274 ml/kg)在研究剂量范围内呈剂量依赖性。这可能与布美他胺在大鼠体内的饱和代谢有关。在静脉给药后,每100克体重的8小时尿量随着剂量的增加而显著增加,这可能是由于随着剂量的增加,8小时尿中布美他胺的排泄量显著增加。给药8 mg/kg后,每100 g体重8小时尿液中钠和氯的排泄总量也显著增加,而钾的排泄值则与剂量无关。口服给药后,布美他尼在24小时尿液中排泄的剂量百分比与剂量无关。布美他尼从胃肠道的所有区域吸收,分别在口服剂量为2、8和20 mg/kg后的1至24小时内,约有43.7%、50.0%和38.4%的口服剂量被吸收。因此,口服给药后出现多峰可能主要与胃排空模式有关。[4]
酶活实验
NKCC1A活性测定[1]
为了在摄取实验之前激活NKCC1A,将表达hnkcc1a的卵母细胞或未注射的对照卵母细胞(每孔5 - 15个卵母细胞)在室温下在高渗透性无K+溶液中预孵育30分钟(mM: 5氯化胆碱,95 NaCl, 1 MgCl2, 1 CaCl2, 10 Hepes;pH 7.4, 207 mOsm),导致卵母细胞收缩,从而激活NKCC1A。为了测量K+内流,将卵母细胞暴露于等渗测试溶液中,其中KCl (5 mM)取代氯化胆碱,并加入2-3 μCi/mL 86Rb+作为K+的示踪剂。用15型自动渗透计对测试介质的渗透性进行了验证。在测试溶液中加入Bumetanide/布美他尼(0.03 ~ 100 μM)、其衍生物(1 ~ 100 μM)或对照物(≤1%,确保实验中所有被测卵母细胞均暴露于相关药物溶剂中)。摄取实验在室温下进行,轻微搅拌5分钟,我们已经证明这是在K+摄取的线性阶段。在不含86Rb+的冷冻实验液中快速洗涤3次,终止内流实验,然后将卵母细胞单独溶解于200 μL 10%十二烷基硫酸钠中,置于闪烁小瓶中。采用Tri-Carb 2900TR液体闪烁分析仪,用Ultima Gold XR闪烁液进行液体闪烁β计数。人类NKCC1剪接变异体a介导的K+摄取被评估为([在x μM药物存在下表达fluxnkcc1的卵母细胞]-[在x μM药物存在下注射fluxnkcc1的卵母细胞]),以纠正内源性NKCC活性。所有实验至少重复3次(范围:3-6次)。
动物实验
Animal/Disease Models: Normotensive SD (SD (Sprague-Dawley)) rats (250-300 g) [3]
Doses: 7.6 mg/kg, 15.2 mg/kg, 30.4 mg/kg
Route of Administration: intravenous (iv) (iv)injection
Experimental Results: diminished middle cerebral artery occlusion (MCAO) ) caused a decrease in ADC values in all four ipsilateral regions (L1-L4).

Animal/Disease Models: Male SD (SD (Sprague-Dawley)) rat (220-300 g) [4]
Doses: 2 mg/kg, 8 mg/kg, 20 mg/kg (pharmacokinetic/PK/PK analysis)
Route of Administration: intravenous (iv) (iv)administration
Experimental Results: T1/2 (21.4 minutes, 53.8 minutes and 137 minutes for 2 mg/kg, 8 mg/kg and 20 mg/kg respectively)
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Bumetanide is completely absorbed (80%), and the absorption is not altered when taken with food. Bioavailability is almost complete.
Oral administration of carbon-14 labeled Bumex to human volunteers revealed that 81% of the administered radioactivity was excreted in the urine, 45% of it as unchanged drug. Biliary excretion of Bumex amounted to only 2% of the administered dose.
0.2 - 1.1 mL/min/kg [preterm and full-term neonates with respiratory disorders]
2.17 mL/min/kg [neonates receiving bumetanide for volume overload]
1.8 +/- 0.3 mL/min/kg [geriatric subjects]
2.9 +/- 0.2 mL/min/kg [younger subjects]
Metabolism / Metabolites
45% is secreted unchanged. Urinary and biliary metabolites are formed by oxidation of the N-butyl side chain.
Biological Half-Life
60-90 minutes
毒性/毒理 (Toxicokinetics/TK)
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
It is unknown if bumetanide is excreted into breastmilk. It should be avoided while breastfeeding a newborn because it may decrease milk flow or completely suppress lactation. Low doses in mothers whose lactation is well established are unlikely to suppress lactation. In general, alternate drugs are preferred.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information on bumetanide was not found as of the revision date. Intense diuresis, fluid restriction and breast binding have been used to suppress lactation immediately postpartum. The added contribution of the diuretic to the other measures, which are effective in suppressing lactation, has not been studied. No data exist on the effects of loop diuretics on established, ongoing lactation.
Protein Binding
97%
参考文献

[1]. The search for NKCC1-selective drugs for the treatment of epilepsy: Structure-function relationship of bumetanide and various bumetanide derivatives in inhibiting the human cation-chloride cotransporter NKCC1A. Epilepsy Behav. 2016 Jun;59:42-9.

[2]. Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways. J Cell Sci. 2011 Mar 1;124(Pt 5):789-800.

[3]. Bumetanide inhibition of the blood-brain barrier Na-K-Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J Cereb Blood Flow Metab. 2004 Sep;24(9):1046-56.

[4]. Pharmacokinetics and pharmacodynamics of bumetanide after intravenous and oral administration to rats: absorption from various GI segments. J Pharmacokinet Biopharm. 1994 Feb;22(1):1-17.6.

其他信息
Bumetanide is a member of the class of benzoic acids that is 4-phenoxybenzoic acid in which the hydrogens ortho to the phenoxy group are substituted by butylamino and sulfamoyl groups. Bumetanide is a diuretic, and is used for treatment of oedema associated with congestive heart failure, hepatic and renal disease. It has a role as a diuretic and an EC 3.6.3.49 (channel-conductance-controlling ATPase) inhibitor. It is a sulfonamide, an amino acid and a member of benzoic acids.
Bumetanide is a sulfamyl diuretic.
Bumetanide is a Loop Diuretic. The physiologic effect of bumetanide is by means of Increased Diuresis at Loop of Henle.
Bumetanide is a potent sulfamoylanthranilic acid derivative belonging to the class of loop diuretics. In the brain, bumetanide may prevent seizures in neonates by blocking the bumetanide-sensitive sodium-potassium-chloride cotransporter (NKCC1), thereby inhibiting chloride uptake thus, decreasing the internal chloride concentration in neurons and may block the excitatory effect of GABA in neonates.
A sulfamyl diuretic.
Drug Indication
For the treatment of edema associated with congestive heart failure, hepatic and renal disease including the nephrotic syndrome.
FDA Label
Treatment of autism spectrum disorder
Mechanism of Action
Bumetanide interferes with renal cAMP and/or inhibits the sodium-potassium ATPase pump. Bumetanide appears to block the active reabsorption of chloride and possibly sodium in the ascending loop of Henle, altering electrolyte transfer in the proximal tubule. This results in excretion of sodium, chloride, and water and, hence, diuresis.
Pharmacodynamics
Bumetanide is a loop diuretic of the sulfamyl category to treat heart failure. It is often used in patients in whom high doses of furosemide are ineffective. There is however no reason not to use bumetanide as a first choice drug. The main difference between the two substances is in bioavailability. Bumetanide has more predictable pharmacokinetic properties as well as clinical effect. In patients with normal renal function, bumetanide is 40 times more effective than furosemide.
Increased transport of Na+ across an intact blood-brain barrier (BBB) participates in edema formation during the early hours of cerebral ischemia. In previous studies, the authors showed that the BBB Na-K-Cl cotransporter is stimulated by factors present during ischemia, suggesting that the cotransporter may contribute to the increased brain Na+ uptake in edema. The present study was conducted to determine (1) whether the Na-K-Cl cotransporter is located in the luminal membrane of the BBB, and (2) whether inhibition of the BBB cotransporter reduces brain edema formation. Perfusion-fixed rat brains were examined for cotransporter distribution by immunoelectron microscopy. Cerebral edema was evaluated in rats subjected to permanent middle cerebral artery occlusion (MCAO) by magnetic resonance diffusion-weighted imaging and calculation of apparent diffusion coefficients (ADC). The immunoelectron microscopy studies revealed a predominant (80%) luminal membrane distribution of the cotransporter. Magnetic resonance imaging studies showed ADC ratios (ipsilateral MCAO/contralateral control) ranging from 0.577 to 0.637 in cortex and striatum, indicating substantial edema formation. Intravenous bumetanide (7.6-30.4 mg/kg) given immediately before occlusion attenuated the decrease in ADC ratios for both cortex and striatum (by 40-67%), indicating reduced edema formation. Bumetanide also reduced infarct size, determined by TTC staining. These findings suggest that a luminal BBB Na-K-Cl cotransporter contributes to edema formation during cerebral ischemia.[3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C17H20N2O5S
分子量
364.4161
精确质量
364.109
元素分析
C, 56.03; H, 5.53; N, 7.69; O, 21.95; S, 8.80
CAS号
28395-03-1
相关CAS号
Bumetanide-d5;1216739-35-3;Bumetanide sodium;28434-74-4;Bumetanide-d5 Butyl Ester;1216685-32-3
PubChem CID
2471
外观&性状
White to off-white solid powder
密度
1.3±0.1 g/cm3
沸点
571.2±60.0 °C at 760 mmHg
熔点
230-2310C
闪点
299.3±32.9 °C
蒸汽压
0.0±1.7 mmHg at 25°C
折射率
1.612
LogP
2.78
tPSA
127.1
氢键供体(HBD)数目
3
氢键受体(HBA)数目
7
可旋转键数目(RBC)
8
重原子数目
25
分子复杂度/Complexity
528
定义原子立体中心数目
0
InChi Key
MAEIEVLCKWDQJH-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H20N2O5S/c1-2-3-9-19-14-10-12(17(20)21)11-15(25(18,22)23)16(14)24-13-7-5-4-6-8-13/h4-8,10-11,19H,2-3,9H2,1H3,(H,20,21)(H2,18,22,23)
化学名
3-(butylamino)-4-phenoxy-5-sulfamoylbenzoic acid
别名
PF 1593, PF-1593, PF1593; Ro 10-6338; bumetanide; 28395-03-1; 3-(Butylamino)-4-phenoxy-5-sulfamoylbenzoic acid; Bumex; Burinex; Fordiuran; Lunetoron; Fontego; Ro-10-6338; Ro 10 6338; Trade names: Bumex or Burinex;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 本产品在运输和储存过程中需避光。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~100 mg/mL (~274.41 mM)
H2O : < 0.1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.86 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (6.86 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.7441 mL 13.7204 mL 27.4409 mL
5 mM 0.5488 mL 2.7441 mL 5.4882 mL
10 mM 0.2744 mL 1.3720 mL 2.7441 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
A Study of Ultra High Dose Diuretics to Treat Heart Failure
CTID: NCT06036914
Phase: Phase 2
Status: Enrolling by invitation
Date: 2024-10-22
Efficacy and Safety of Bumetanide Oral Liquid Formulation in Children and Adolescents Aged From 7 to Less Than 18 Years Old With Autism Spectrum Disorder
CTID: NCT03715166
Phase: Phase 3
Status: Terminated
Date: 2024-07-25
Efficacy of Bumetanide to Improve Cognitive Functions in Down Syndrome
CTID: NCT06465823
Phase: Phase 2
Status: Recruiting
Date: 2024-06-20
Mechanisms of Diuretic Resistance in Heart Failure, Aim 1
CTID: NCT05323487
Phase: Phase 1
Status: Recruiting
Date: 2024-06-04
Delivering a Diuretic Into the Liver Artery Followed by Plugging up the Artery to Starve Out Liver Cancer Cells
CTID: NCT03107416
Phase: Phase 1/Phase 2
Status: Active, not recruiting
Date: 2024-04-30
Diuretic Treatment in Acute Heart Failure with Volume Overload Guided by Serial Spot Urine Sodium Assessment
EudraCT: 2021-005426-18
Phase: Phase 4
Status: Completed
Date: 2022-03-02
A Randomized Waitlist-Control Trial with Bumetanide in Children with Autism
EudraCT: 2021-003851-41
Phase: Phase 2
Status: Ongoing
Date: 2021-11-08
post-trial access cohort BUmetanide for Developmental DIsorders
EudraCT: 2020-002196-35
Phase: Phase 2
Status: Ongoing
Date: 2020-11-16
A phase 2 controlled study with blinded outcome assessment on the efficacy of Bumetanide vs no drug treatment for cognitive improvement to rescue cognitive functions in children and adolescents with Down syndrome
EudraCT: 2015-005780-16
Phase: Phase 2
Status: Ongoing
Date: 2019-04-10
Efficacy and safety of bumetanide oral liquid formulation in children aged from 2 to less than 7 years old with Autism Spectrum Disorder.
EudraCT: 2017-004420-30
Phase: Phase 3
Status: Prematurely Ended, GB - no longer in EU/EEA, Completed, Not Authorised
Date: 2018-10-04
联系我们