规格 | 价格 | 库存 | 数量 |
---|---|---|---|
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
Other Sizes |
|
体外研究 (In Vitro) |
在 CV-1 细胞中,布地奈德优先结合人糖皮质激素受体(hGR;EC50=45.7 pM),而不是盐皮质激素受体(EC50=7,620 pM)。在巨噬细胞(RAW 264.7 细胞)中,布地奈德(LPS 前 30 分钟)可抑制 LPS (100 ng/mL) + ATP (5 mM) 激活 NLRP3 炎症小体[2]。
|
---|---|
体内研究 (In Vivo) |
布地奈德(2.0 mg/kg;通过饮食口服;处死前 2、7 和 21 天)可减小肺肿瘤大小[3]。布地奈德预处理(0.5 mg/kg;LPS 注射 (5 mg/kg) 前 1 小时鼻内给药)可显着减轻患有 ALI 的成年雄性 C57BL/6 小鼠的病理损伤并降低病理评分[2]。
|
动物实验 |
Animal/Disease Models: Female strain A/J mice at 8 weeks of age[3]
Doses: 2.0 mg/ kg Route of Administration: Orally via their diet; at 2, 7 and 21 days prior to killing (27 weeks) Experimental Results: decreased the size of the lung tumors after 2 days and rapidly diminished the size of lung tumors, reversed DNA hypomethylation and modulated mRNA expression of genes. |
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
Extended release oral capsules are 9-21% bioavailable. A 9mg dose reaches a Cmax of 1.50±0.79ng/mL with a Tmax of 2-8h and an AUC of 7.33ng\*hr/mL. A high fat meal increases the Tmax by 2.3h but otherwise does not affect the pharmacokinetics of budesonide. 180-360µg metered inhaled doses of budesonide are 34% deposited in the lungs, 39% bioavailable, and reach a Cmax of 0.6-1.6nmol/L with a Tmax of 10 minutes. A 1mg nebulized dose is 6% bioavailable, reaching a Cmax of 2.6nmol/L with a Tmax of 20 minutes. A 9mg oral extended release tablet reaches a Cmax of 1.35±0.96ng/mL with a Tmax of 13.3±5.9h and an AUC of 16.43±10.52ng\*hr/mL. Budesonide rectal foam 2mg twice daily has an AUC of 4.31ng\*hr/mL. Approximately 60% of a budesonide dose is recovered in the urine as the major metabolites 6beta-hydroxybudesonide, 16alpha-hydroxyprednisolone, and their conjugates. No unchanged budesonide is recovered in urine. The volume of distribution of budesonide is 2.2-3.9L/kg. Budesonide has a plasma clearance of 0.9-1.8L/min. The 22R form has a clearance of 1.4L/min while the 22S form has a clearance of 1.0L/min. The clearance in asthmatic children 4-6 years old is 0.5L/min. /MILK/ Not known whether budesonide is distributed in milk. When budesonide is administered intranasally, approximately 34% of a dose reaches systemic circulation. Mean peak plasma budesonide concentrations are achieved in about 0.7 hours. Inhaled corticosteroids (ICS) are mainstay treatment of asthma and chronic obstructive pulmonary disease. However, highly lipophilic ICS accumulate in systemic tissues, which may lead to adverse systemic effects. The accumulation of a new, highly lipophilic ICS, ciclesonide and its active metabolite (des-CIC) has not yet been reported. Here, we have compared tissue accumulation of des-CIC and an ICS of a moderate lipophilicity, budesonide (BUD), after 14 days of once-daily treatment in mice. Single, three or 14 daily doses of [(3) H]-des-CIC or [(3) H]-BUD were administered subcutaneously to male CD1 albino mice, which were killed at 4 hrs, 24 hrs or 5 days after the last dose. Distribution of tissue concentration of radioactivity was studied by quantitative whole-body autoradiography. Pattern of radioactivity distribution across most tissues was similar for both corticosteroids after a single as well as after repeated dosing. However, tissue concentration of radioactivity differed between des-CIC and BUD. After a single dose, concentrations of radioactivity for both corticosteroids were low for most tissues but increased over 14 days of daily dosing. The tissue radioactivity of des-CIC at 24 hrs and 5 days after the 14th dose was 2-3 times higher than that of BUD in majority of tissues. Tissue accumulation, assessed as concentration of tissue radioactivity 5 days after the 14th versus 3rd dose, showed an average ratio of 5.2 for des-CIC and 2.7 for BUD (p < 0.0001). In conclusion, des-CIC accumulated significantly more than BUD. Systemic accumulation may lead to increased risk of adverse systemic side effects during long-term therapy. Metabolism / Metabolites Budesonide is 80-90% metabolized at first pass. Budesonide is metabolized by CYP3A to its 2 major metabolites, 6beta-hydroxybudesonide and 16alpha-hydroxyprednisolone. The glucocorticoid activity of these metabolites is negligible (<1/100) in relation to that of the parent compound. CYP3A4 is the strongest metabolizer of budesonide, followed by CYP3A5, and CYP3A7. Budesonide is metabolized in the liver by the cytochrome P-450 (CYP) isoenzyme 3A4; the 2 main metabolites have less than 1% of affinity for glucocorticoid receptors than the parent compound. Budesonide is excreted in urine and feces as metabolites. Asthma is one of the most prevalent diseases in the world, for which the mainstay treatment has been inhaled glucocorticoids (GCs). Despite the widespread use of these drugs, approximately 30% of asthma sufferers exhibit some degree of steroid insensitivity or are refractory to inhaled GCs. One hypothesis to explain this phenomenon is interpatient variability in the clearance of these compounds. The objective of this research is to determine how metabolism of GCs by the CYP3A family of enzymes could affect their effectiveness in asthmatic patients. In this work, the metabolism of four frequently prescribed inhaled GCs, triamcinolone acetonide, flunisolide, budesonide, and fluticasone propionate, by the CYP3A family of enzymes was studied to identify differences in their rates of clearance and to identify their metabolites. Both interenzyme and interdrug variability in rates of metabolism and metabolic fate were observed. CYP3A4 was the most efficient metabolic catalyst for all the compounds, and CYP3A7 had the slowest rates. CYP3A5, which is particularly relevant to GC metabolism in the lungs, was also shown to efficiently metabolize triamcinolone acetonide, budesonide, and fluticasone propionate. In contrast, flunisolide was only metabolized via CYP3A4, with no significant turnover by CYP3A5 or CYP3A7. Common metabolites included 6 Beta-hydroxylation and Delta (6)-dehydrogenation for triamcinolone acetonide, budesonide, and flunisolide. The structure of Delta (6)-flunisolide was unambiguously established by NMR analysis. Metabolism also occurred on the D-ring substituents, including the 21-carboxy metabolites for triamcinolone acetonide and flunisolide. The novel metabolite 21-nortriamcinolone acetonide was also identified by liquid chromatography-mass spectrometry and NMR analysis. Biological Half-Life Budesonide has a plasma elimination half life of 2-3.6h. The terminal elimination half life in asthmatic children 4-6 years old is 2.3h. |
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
IDENTIFICATION AND USE: Budesonide (trade names: Rhinocort, MMX) is a prescription medication approved for the treatment of allergic rhinitis (Rhinocort nasal spray) and mild to moderate Crohn's disease (MMX, enteric coated capsules). HUMAN EXPOSURE AND TOXICITY: Patch tests have indicated that budesonide can produce delayed allergic reactions, and atopic dermatitis. In cases of inhalational exposure, periorificial dermatitis has been reported. In cases of oral administration, Candida albicans esophagitis, dysphagia, elevated blood pressure, lower extremity edema, and weight gain have been reported, although some of these adverse events may have been the result of a drug interaction with voriconazole. Epidemiological studies have found an increased risk of pneumonia, cardiac dysrhythmias, cataracts, and fractures associated with inhaled budesonide use. Additional epidemiological studies have found that budesonide inhalation during pregnancy may be a risk factor for offspring endocrine and metabolic disturbances. Low birth weight has also been reported. In children taking budesonide for persistent asthma, slower linear growth, slow weight gain, and slow skeletal maturation have also been observed. Localized Candidal infections of the nose and pharynx has been reported during intranasal budesonide therapy. Patients may be at an increased risk for certain infections, such as Varicella (chickenpox). In children and adolescents, administration of budesonide may cause growth suppression. It may also cause acute or delayed hypersensitivity reactions. Hypoadrenalism may occur in infants of mothers receiving corticosteroid therapy during pregnancy. ANIMAL STUDIES: In carcinogenicity studies, hepatocellular tumors and gliomas have been observed in rats that received oral budesonide. In female rats that received budesonide subcutaneously, a decrease in prenatal viability and viability of pups during pregnancy and lactation was observed. Pyloric hyalinization was detected in mice that received budesonide orally. Hepatotoxicity Long term therapy with budesonide has not been linked to elevations in serum enzyme levels, and in clinical trials rates of ALT elevations were similar with budesonide as with placebo treatment. In controlled trials, there were no reported cases of clinically apparent liver injury associated with its use. Unlike conventional systemically administered corticosteroids, budesonide has not been linked to episodes of reactivation of hepatitis B. Budesonide has been used in severe autoimmune liver diseases without evidence that it causes worsening of liver injury. Because it can improve serum aminotransferase elevations in patients with autoimmune hepatitis, its withdrawal may be followed by rebound elevations as also occurs with conventional corticosteroid therapy. In addition, there has been a single case report of acute serum aminotransferase elevations during budesonide therapy that resolved when the drug was stopped, but documentation was limited and the patient was on multiple other potentially hepatotoxic drugs. Likelihood score: E (unlikely cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation The amounts of inhaled budesonide excreted into breastmilk are minute and infant exposure is negligible. When taken by mouth, budesonide is only about 9% bioavailable; bioavailability in the infant is likely to be similarly low for any budesonide that enters the breastmilk. Expert opinion considers inhaled, nasal, oral and rectal corticosteroids acceptable to use during breastfeeding. ◉ Effects in Breastfed Infants None reported with any corticosteroid. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding Corticosteroids are generally bound to corticosteroid binding globulin and serum albumin in plasma. Budesonide is 85-90% protein bound in plasma. Interactions Steroid psychosis has been well described with oral glucocorticoids, however, our search of the literature did not identify an association between delirium and the combination of inhaled glucocorticoids and long-acting beta-agonists. We describe the occurrence of delirium with the combination of an inhaled glucocorticoid and bronchodilator. An elderly male described confusion and hallucinations within 1 week after initiation of budesonide/formoterol for chronic obstructive pulmonary disease. The combination inhaler was discontinued with resolution of symptoms. Several weeks later, the patient was hospitalized and restarted on the combination inhaler. The patient was alert and oriented on admission, however, confusion and hallucinations progressed throughout his hospital stay. The combination inhaler was discontinued and his confusion and hallucinations resolved by discharge. The temporal relationship of these events and a probable Naranjo association allows for reasonable assumption that the use of the budesonide/formoterol combination inhaler caused or contributed to the occurrences of delirium in this elderly patient. The onset of delirium was likely due to the systemic absorption of the glucocorticoid from lung deposition, complicated in an individual with several predisposing risk factors for delirium. Health care providers should be aware of this potential adverse drug reaction when prescribing inhaled medications to older patients at risk for delirium. A 48-year-old woman with HIV infection developed Cushingoid features while she was taking ritonavir-boosted darunavir. Cushing's syndrome was confirmed due to the drug interaction between ritonavir and budesonide. Diagnosis of iatrogenic Cushing's syndrome in HIV-positive patients who are on ritonavir-boosted protease inhibitors (PIs) presents a clinical challenge due to similar clinical features of lipohypertrophy related to ritonavir-boosted PIs. Although this complication has been widely described with the use of inhaled fluticasone, the interaction with inhaled budesonide at therapeutic dose is not widely recognized. To present two cases of iatrogenic Cushing syndrome caused by the interaction of budesonide, an inhaled glucocorticoid, with ritonavir and itraconazole, we present the clinical and biochemical data of two patients in whom diagnosis of Cushing syndrome was caused by this interaction. A 71-year-old man was treated with inhaled budesonide for a chronic obstructive pulmonary disease and itraconazole for a pulmonary aspergillosis. The patient rapidly developed a typical Cushing syndrome complicated by bilateral avascular necrosis of the femoral heads. Serum 8:00 AM cortisol concentrations were suppressed at 0.76 and 0.83 ug/dL on two occasions. The patient died 4 days later of a massive myocardial infarction. The second case is a 46-year-old woman who was treated for several years with inhaled budesonide for asthma. She was put on ritonavir, a retroviral protease inhibitor, for the treatment of human immunodeficiency virus (HIV). In the following months, she developed typical signs of Cushing syndrome. Her morning serum cortisol concentration was 1.92 ug/dL. A cosyntropin stimulation test showed values of serum cortisol of <1.10, 2.65, and 5.36 ug/dL at 0, 30, and 60 minutes, respectively, confirming an adrenal insufficiency. Because the patient was unable to stop budesonide, she was advised to reduce the frequency of its administration and eventually taper the dose until cessation. Clinicians should be aware of the potential occurrence of iatrogenic Cushing syndrome and secondary adrenal insufficiency due to the association of inhaled corticosteroids with itraconazole or ritonavir. Oral budesonide is commonly used for the management of Crohn's disease given its high affinity for glucocorticoid receptors and low systemic activity due to extensive first-pass metabolism through hepatic cytochrome P450 (CYP) 3A4. Voriconazole, a second-generation triazole antifungal agent, is both a substrate and potent inhibitor of CYP isoenzymes, specifically CYP2C19, CYP2C9, and CYP3A4; thus, the potential for drug-drug interactions with voriconazole is high. To our knowledge, drug-drug interactions between voriconazole and corticosteroids have not been specifically reported in the literature. We describe a 48-year-old woman who was receiving oral budesonide 9 mg/day for the management of Crohn's disease and was diagnosed with fluconazole-resistant Candida albicans esophagitis; oral voriconazole 200 mg every 12 hours for 3 weeks was prescribed for treatment. Because the patient experienced recurrent symptoms of dysphagia, a second 3-week course of voriconazole therapy was taken. Seven weeks after originally being prescribed voriconazole, she came to her primary care clinic with elevated blood pressure, lower extremity edema, and weight gain; she was prescribed a diuretic and evaluated for renal dysfunction. At a follow-up visit 6 weeks later with her specialty clinic, the patient's blood pressure was elevated, and her physical examination was notable for moon facies, posterior cervical fat pad prominence, and lower extremity pitting edema. Iatrogenic Cushing syndrome due to a drug-drug interaction between voriconazole and budesonide was suspected, and voriconazole was discontinued. Budesonide was continued as previously prescribed for her Crohn's disease. On reevaluation 2 months later, the patient's Cushingoid features had markedly regressed. To our knowledge, this is the first published case report of iatrogenic Cushing syndrome due to a probable interaction between voriconazole and oral budesonide. In patients presenting with Cushingoid features who have received these drugs concomitantly, clinicians should consider the potential drug interaction between these agents, and the risks and benefits of continued therapy must be considered. For more Interactions (Complete) data for Budesonide (11 total), please visit the HSDB record page. |
参考文献 |
|
其他信息 |
Therapeutic Uses
Anti-Inflammatory Agents; Bronchodilator Agents; Glucocorticoids /CLINICAL TRIALS/ ClinicalTrials.gov is a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. The Web site is maintained by the National Library of Medicine (NLM) and the National Institutes of Health (NIH). Each ClinicalTrials.gov record presents summary information about a study protocol and includes the following: Disease or condition; Intervention (for example, the medical product, behavior, or procedure being studied); Title, description, and design of the study; Requirements for participation (eligibility criteria); Locations where the study is being conducted; Contact information for the study locations; and Links to relevant information on other health Web sites, such as NLM's MedlinePlus for patient health information and PubMed for citations and abstracts for scholarly articles in the field of medicine. Budesonide is included in the database. Budesonide capsules (enteric coated) are indicated for the treatment of mild to moderate active Crohn's disease involving the ileum and/or the ascending colon. /Included in US product label/ Budesonide capsules (enteric coated) are indicated for the maintenance of clinical remission of mild to moderate Crohn's disease involving the ileum and/or the ascending colon for up to 3 months. /Included in US product label/ For more Therapeutic Uses (Complete) data for Budesonide (13 total), please visit the HSDB record page. Drug Warnings Intranasal budesonide therapy should be used with caution, if at all, in patients with clinical or asymptomatic Mycobacterium tuberculosis infections of the respiratory tract, untreated fungal or bacterial infections, or ocular herpes simplex or untreated, systemic viral infections. Localized candidal infections of the nose and/or pharynx have occurred rarely during intranasal budesonide therapy. When infection occurs, appropriate local or systemic treatment of the infection may be necessary, and/or discontinuance of intranasal budesonide therapy may be required. Patients receiving the drug for several months or longer should be examined periodically for candidal infections or changes in the nasal mucosa. Nasal septum perforation and increased intraocular pressure (IOP) have been reported rarely in patients receiving budesonide nasal spray. Because corticosteroid therapy may inhibit wound healing, patients with recent nasal septum ulcers, nasal surgery, or nasal trauma should not use nasal corticosteroids until healing has occurred. Patients who are taking immunosuppressant drugs have increased susceptibility to infections compared with healthy individuals, and certain infections (e.g., varicella [chickenpox], measles) can have a more serious or even fatal outcome in such patients, particularly in children. In patients who have not had these diseases, particular care should be taken to avoid exposure. It is not known how the dosage, route, and duration of administration of a corticosteroid or the contribution of the underlying disease and/or prior corticosteroid therapy affect the risk of developing a disseminated infection. If exposure to varicella (chickenpox) or measles occurs in such individuals, administration of varicella zoster immune globulin (VZIG) or pooled IM immune globulin (IG) respectively, may be initiated. If varicella (chickenpox) develops, treatment with an antiviral agent may be considered. Adverse effects of budesonide occurring in 2% or more of patients receiving budesonide nasal spray and with an incidence more frequent than that of placebo include epistaxis, pharyngitis, bronchospasm, cough, and nasal irritation. For more Drug Warnings (Complete) data for Budesonide (17 total), please visit the HSDB record page. Pharmacodynamics Budesonide is a glucocorticoid used to treat respiratory and digestive conditions by reducing inflammation. It has a wide therapeutic index, as dosing varies highly from patient to patient. Patients should be counselled regarding the risk of hypercorticism and adrenal axis suppression. |
分子式 |
C25H34O6
|
|
---|---|---|
分子量 |
430.53
|
|
精确质量 |
430.235
|
|
CAS号 |
51333-22-3
|
|
相关CAS号 |
Budesonide-d8;1105542-94-6;Budesonide (Standard);51333-22-3
|
|
PubChem CID |
5281004
|
|
外观&性状 |
White to off-white solid powder
|
|
密度 |
1.3±0.1 g/cm3
|
|
沸点 |
599.7±50.0 °C at 760 mmHg
|
|
熔点 |
221-232ºC (dec.)
|
|
闪点 |
201.8±23.6 °C
|
|
蒸汽压 |
0.0±3.9 mmHg at 25°C
|
|
折射率 |
1.592
|
|
LogP |
3.14
|
|
tPSA |
93.06
|
|
氢键供体(HBD)数目 |
2
|
|
氢键受体(HBA)数目 |
6
|
|
可旋转键数目(RBC) |
4
|
|
重原子数目 |
31
|
|
分子复杂度/Complexity |
862
|
|
定义原子立体中心数目 |
8
|
|
SMILES |
CCCC1O[C@@H]2C[C@H]3[C@@H]4CCC5=CC(=O)C=C[C@@]5([C@H]4[C@H](C[C@@]3([C@@]2(O1)C(=O)CO)C)O)C
|
|
InChi Key |
VOVIALXJUBGFJZ-KWVAZRHASA-N
|
|
InChi Code |
InChI=1S/C25H34O6/c1-4-5-21-30-20-11-17-16-7-6-14-10-15(27)8-9-23(14,2)22(16)18(28)12-24(17,3)25(20,31-21)19(29)13-26/h8-10,16-18,20-22,26,28H,4-7,11-13H2,1-3H3/t16-,17-,18-,20+,21?,22+,23-,24-,25+/m0/s1
|
|
化学名 |
(6aR,6bS,7S,8aS,8bS,11aR,12aS,12bS)-7-hydroxy-8b-(2-hydroxyacetyl)-6a,8a-dimethyl-10-propyl-6a,6b,7,8,8a,8b,11a,12,12a,12b-decahydro-1H-naphtho[2,1:4,5] indeno[1,2-d][1,3]dioxol-4(2H)-one
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.08 mg/mL (4.83 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (4.83 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (4.83 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.3227 mL | 11.6136 mL | 23.2272 mL | |
5 mM | 0.4645 mL | 2.3227 mL | 4.6454 mL | |
10 mM | 0.2323 mL | 1.1614 mL | 2.3227 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。