(-)-Blebbistatin (S-Blebbistatin)

别名: (S)-Blebbistatin; (-)-Blebbistatin; 856925-71-8; (S)-(-)-Blebbistatin; (S)-blebbistatin; Blebbistatin, (-)-; (-)Blebbistatin; Blebbistatin (S)-form [MI]; CHEBI:75388; Blebbistatin. (-)-Blebbistatin;Ⅱ型肌球蛋白抑制剂
目录号: V0180 纯度: ≥98%
Blebbistatin 是一种有效、选择性、可逆且细胞可渗透的非肌肉肌球蛋白 II ATP 酶小分子抑制剂,在无细胞测定中 IC50 约为 2 μM。
(-)-Blebbistatin (S-Blebbistatin) CAS号: 856925-71-8
产品类别: ATPase
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
2mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of (-)-Blebbistatin (S-Blebbistatin):

  • S-(-)-7-Desmethyl-8-nitro blebbistatin
  • (+)-布雷他汀 (R-Blebbistatin)
  • Blebbistatin (racemate)
  • Para-aminoblebbistatin
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
(-)-Blebbistatin 是一种有效、选择性、可逆且细胞可渗透的非肌肉肌球蛋白 II ATP 酶小分子抑制剂,在无细胞测定中 IC50 约为 2 μM。它已在研究界广泛用于抑制心肌肌球蛋白、非肌肉肌球蛋白 II 和骨骼肌肌球蛋白。作为一种对肌球蛋白 II 收缩分子具有高亲和力和选择性的细胞渗透性分子,(-)-布雷他汀优先与肌球蛋白-ADP-Pi 复合物结合,以减缓磷酸盐的释放。该抑制剂在体外完全消除肌动蛋白激活的 Mg-ATPase 活性的收缩和肌球蛋白 II 的运动(IC50 = 0.5-5.0 μM),但对平滑肌肌球蛋白 II 的影响较差(IC50 =80 μM)和肌球蛋白 I、V 和 X。
生物活性&实验参考方法
靶点
Myosin II (IC50: 0.5 to 5 μM)
体外研究 (In Vitro)
Blebbistatin 的 IC50 值范围为 0.5 至 5 μM,可有效抑制脊椎动物非肌肉肌球蛋白 IIA 和 IIB 以及多种横纹肌肌球蛋白。对平滑肌肌球蛋白仅有轻微抑制作用 (IC50=80 μM)[1]。肌球蛋白亚片段 1 与肌球蛋白亚片段 1 的核苷酸结合不具有竞争性。该抑制剂通过优先与 ATP 酶中间体、ADP 和活性位点的磷酸盐结合来抑制磷酸盐的释放。它抑制与肌动蛋白亲和力较低的复合物中的肌球蛋白头部基团 [2]。布雷他汀被证明可以在体外改变活化肝星状细胞的外观和功能。星细胞经历树突形态、收缩并失去含有纽蛋白和肌球蛋白 IIA 的粘着斑和应力纤维。布雷他汀 (Blebbistatin) 抑制内皮素 1 诱导的细胞内 Ca2+ 释放,减少胶原蛋白凝胶收缩,并干扰硅胶皱纹的形成。它促进伤口诱导的细胞迁移[3]。
体内研究 (In Vivo)
blebbistatin 以剂量依赖的方式完全放松由 KCl 和卡巴胆碱引发的大鼠逼尿肌以及由内皮素-1 引起的人类膀胱收缩。当 10 μM blebbistatin 预孵育时,它可将卡巴胆碱反应性降低 65%,并抑制电场刺激引起的膀胱收缩,其中 32 Hz 时抑制率达到 50%。
与模型组相比,Blebbistatin(1mg/kg)抑制颈动脉AT的发展,减少炎性细胞的浸润,并防止血管组织损伤。此外,Blebbistati还降低了TF的促凝活性。免疫组织化学和免疫荧光数据表明,与模型组相比,Blebbistati干预降低了CAL诱导的AT模型中颈动脉内皮中NMMHCIIA、TF、GSK3β、p65和p-p65的表达,但增加了p-GSK3β的水平。Blebbistatin可以抑制CAL模型中NMMHCIIA mRNA的表达[3]。
酶活实验
[Ca2+]i[2]的测量
使用多模式台式酶标仪分析了blebbistatin对凝血酶和ATP诱导的Ca2+瞬变的影响。将细胞(每孔8000个)接种到96孔板上,并在2至3天内达到融合。然后在室温下用Fura-2AM(终浓度为1.25μg/mL)装载细胞30分钟。通过分别在510 nm处获得发射,在340 nm和380 nm处获得激发,从而获得比率[Ca2+]i测量值。使用R编程的DRC包(版本1.2.0),使用Michaelis-Menten模型拟合ATP剂量-反应曲线。
细胞实验
全器官移植培养[4]
从出生后第3天(P)的野生型FVB小鼠中解剖耳蜗感觉上皮,并在添加了2%B27、1%N-2和50μg/ml氨苄青霉素的DMEM/F12中培养。在实验组中,耳蜗用0.5 mM新霉素和1μMblebbistatin(溶解在DMSO中)处理12小时,并允许再恢复12小时。将等量的DMS添加到对照组和仅新霉素组中。组织在37°C和5%CO2下培养。
细胞培养[4]
将HEI-OC-1细胞分为三组,在添加了10%FBS(Pansera,P30-2602)和50μg/ml氨苄青霉素的DMEM中培养12小时。在此初始培养后,实验组在6孔板中用2 mM新霉素和0.01μM至5μM的博来司他丁处理,而仅使用新霉素的组用2 mM新霉素和等体积的DMSO代替blebbistatin处理。再培养24小时后,用PBS彻底洗涤细胞,并在含有氨苄青霉素的DMEM中培养12小时。用等体积的DMSO处理不含新霉素或blebbistatin的对照细胞,并在相同条件下孵育。最后,用倒置相差显微镜对细胞进行成像。
CCK-8含量测定[4]
使用细胞计数CCK-8试剂盒(蛋白质生物技术,CC201-01)测量细胞死亡。简而言之,将HEI-OC-1细胞暴露于96孔板中的2 mM新霉素中12小时。去除新霉素后,让组织再恢复12小时。在实验组的整个过程中加入blebbistatin,在仅使用新霉素的组中加入等体积的DMSO。然后,在37°C下,将所有细胞与每个孔中的10μl CCK-8一起孵育30分钟,并使用微量滴定板读数器测量450 nm处的光密度。
动物实验
Model of carotid-artery ligation (CAL)[3]
A mouse model of CAL was generated using a modified method based on previous reports. Briefly, C57BL/6 J mice were anesthetized, as determined by assessment of the righting reflex. Neck hair was removed and a 1-cm midline incision made in the neck to expose the right side of the carotid artery. Two knots were tied in the upper end of the isolated carotid artery (external carotid artery) and internal carotid artery using 6.0 non-absorbable sutures. During carotid surgery, a length of ∼1 cm, between the upper-artery bifurcation and the carotid artery from the first lower ligation point, was tied using two 6.0 non-absorbable silk knots. The wound was rinsed with physiologic (0.9 %) saline, after closing muscle and skin (model group). Sham-operated mice underwent carotid-artery surgery after anesthesia without silk ligation (sham group). The blebbistatin was dissolved in absolute ethanol to the concentration of 1 × 10−2 M, and suspended at 0.5 % CMC-Na before use. In the blebbistatin group, mice were injected with blebbistatin (1 mg/kg, i.v.) to inhibit thrombosis. The blebbistatin was injected to the mice at the 0,4.7 day from the ligation. Six mice were included in each group. After 7 days, blood vessels from all groups were collected.[3]
5-25 μM
Zebrafish embryos model
参考文献
[1]. Absolute Stereochemical Assignment and Fluorescence Tuning of the Small Molecule Tool, (–)‐Blebbistatin. Eur J org Chem. 2005, 2005 (9), 1736-1740. doi.org/10.1002/ejoc.200500103
[2]. The myosin II ATPase inhibitor blebbistatin prevents thrombin-induced inhibition of intercellularcalcium wave propagation in corneal endothelial cells. Invest Ophthalmol Vis Sci. 2008 Nov;49(11):4816-27.
[3]. An inhibitor of myosin II, blebbistatin, suppresses development of arterial thrombosis. Bomed Pharmacother . 2020 Feb:122:109775.
[4]. Blebbistatin Inhibits Neomycin-Induced Apoptosis in Hair Cell-Like HEI-OC-1 Cells and in Cochlear Hair Cells. Front Cell Neurosci. 2020 Feb 5;13:590.
其他信息
(S)-blebbistatin is the (S)-enantiomer of blebbistatin. It is a blebbistatin and a tertiary alpha-hydroxy ketone.
(–)-Blebbistatin (1), a recently discovered small molecule inhibitor of the ATPase activity of non-muscle myosin II has been prepared from methyl 5-methylanthranilate (6) in three steps. This flexible synthetic route has also been used to prepare a nitro group-containing analogue 12 that has modified fluorescence properties and improved stability under microscope illumination. The key step in the synthesis of 1 and its analogues was the asymmetric hydroxylation of the quinolone intermediate 3 using the Davis oxaziridine methodology. The absolute stereochemistry of (–)-blebbistatin (1) was shown to be S by X-ray crystal structure analysis of a heavy atom (bromine) containing analogue 11, which was subsequently reduced and shown to be identical to 1.[1]
Purpose: Thrombin inhibits intercellular Ca(2+) wave propagation in bovine corneal endothelial cells (BCECs) through a mechanism dependent on myosin light chain (MLC) phosphorylation. In this study, blebbistatin, a selective myosin II ATPase inhibitor, was used to investigate whether the effect of thrombin is mediated by enhanced actomyosin contractility. Methods: BCECs were exposed to thrombin (2 U/mL) for 5 minutes. MLC phosphorylation was assayed by immunocytochemistry. Ca(2+) waves were visualized by confocal microscopy with Fluo-4AM. Fluorescence recovery after photobleaching (FRAP) was used to investigate intercellular communication (IC) via gap junctions. ATP release was measured by luciferin-luciferase assay. Lucifer yellow (LY) uptake was used to investigate hemichannel activity, and Fura-2 was used to assay thrombin- and ATP-mediated Ca(2+) responses. Results: Pretreatment with blebbistatin (5 microM for 20 minutes) or its nitro derivative prevented the thrombin-induced inhibition of the Ca(2+) wave. Neither photo-inactivated blebbistatin nor the inactive enantiomers prevented the thrombin effect. Blebbistatin also prevented thrombin-induced inhibition of LY uptake, ATP release and FRAP, indicating that it prevented the thrombin effect on paracrine and gap junctional IC. In the absence of thrombin, blebbistatin had no significant effect on paracrine or gap junctional IC. The drug had no influence on MLC phosphorylation or on [Ca(2+)](i) transients in response to thrombin or ATP. Conclusions: Blebbistatin prevents the inhibitory effects of thrombin on intercellular Ca(2+) wave propagation. The findings demonstrate that myosin II-mediated actomyosin contractility plays a central role in thrombin-induced inhibition of gap junctional IC and of hemichannel-mediated paracrine IC.[2]
Arterial thrombosis (AT) causes various ischemia-related diseases, which impose a serious medical burden worldwide. As an inhibitor of myosin II, blebbistatin has an important role in thrombosis development. We investigated the effect of blebbistatin on carotid artery ligation (CAL)-induced carotid AT and its potential underlying mechanism. A model of carotid AT in mice was generated by CAL. Mice were divided into three groups: CAL model, blebbistatin-treated, and sham-operation. After 7 days, blood vessels were harvested from mice in each group. The procoagulant activity of tissue factor (TF) was tested by a chromogenic assay, and thrombus severity assessed by histopathology scores. Expression of non-muscle myosin heavy chain II A (NMMHCIIA), TF, glycogen synthase kinase 3β (GSK3β), and nuclear factor-kappa B (NF-κB) was detected by immunohistochemical and immunofluorescence staining. mRNA expression was measured by quantitative polymerase chain reaction. Blebbistatin (1 mg/kg) inhibited development of carotid AT, reduced infiltration of inflammatory cells, and prevented vascular-tissue damage, relative to the model group. Furthermore, blebbistatin also reduced the procoagulant activity of TF. Immunohistochemical and immunofluorescence data demonstrated that, compared with the model group, blebbistatin intervention reduced expression of NMMHCIIA, TF, GSK3β, p65, and p-p65 in carotid-artery endothelia in the CAL-induced AT model, but it increased levels of p-GSK3β. Blebbistatin could inhibit expression of NMMHCIIA mRNA in the CAL model. Overall, our data demonstrated that blebbistatin could inhibit TF expression and AT development in arterial endothelia (at least in part) via GSK3β/NF-κB signaling.[3]
Aging, noise, and ototoxic drug-induced hair cell (HC) loss are the major causes of sensorineural hearing loss. Aminoglycoside antibiotics are commonly used in the clinic, but these often have ototoxic side effects due to the accumulation of oxygen-free radicals and the subsequent induction of HC apoptosis. Blebbistatin is a myosin II inhibitor that regulates microtubule assembly and myosin-actin interactions, and most research has focused on its ability to modulate cardiac or urinary bladder contractility. By regulating the cytoskeletal structure and reducing the accumulation of reactive oxygen species (ROS), blebbistatin can prevent apoptosis in many different types of cells. However, there are no reports on the effect of blebbistatin in HC apoptosis. In this study, we found that the presence of blebbistatin significantly inhibited neomycin-induced apoptosis in HC-like HEI-OC-1 cells. We also found that blebbistatin treatment significantly increased the mitochondrial membrane potential (MMP), decreased ROS accumulation, and inhibited pro-apoptotic gene expression in both HC-like HEI-OC-1 cells and explant-cultured cochlear HCs after neomycin exposure. Meanwhile, blebbistatin can protect the synaptic connections between HCs and cochlear spiral ganglion neurons. This study showed that blebbistatin could maintain mitochondrial function and reduce the ROS level and thus could maintain the viability of HCs after neomycin exposure and the neural function in the inner ear, suggesting that blebbistatin has potential clinic application in protecting against ototoxic drug-induced HC loss.[4]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C18H16N2O2
分子量
292.33
精确质量
292.121
元素分析
C, 73.95; H, 5.52; N, 9.58; O, 10.95
CAS号
856925-71-8
相关CAS号
Blebbistatin;674289-55-5 (racemic); 856925-71-8 (S-isomer); 1177356-70-5 (R-isomer)
PubChem CID
5287792
外观&性状
Light yellow to yellow solid powder
密度
1.3±0.1 g/cm3
沸点
486.7±55.0 °C at 760 mmHg
熔点
210-212ºC
闪点
248.1±31.5 °C
蒸汽压
0.0±1.3 mmHg at 25°C
折射率
1.681
LogP
0.93
tPSA
52.9
氢键供体(HBD)数目
1
氢键受体(HBA)数目
3
可旋转键数目(RBC)
1
重原子数目
22
分子复杂度/Complexity
497
定义原子立体中心数目
1
SMILES
CC1=CC2=C(C=C1)N=C3[C@](C2=O)(CCN3C4=CC=CC=C4)O
InChi Key
LZAXPYOBKSJSEX-GOSISDBHSA-N
InChi Code
InChI=1S/C18H16N2O2/c1-12-7-8-15-14(11-12)16(21)18(22)9-10-20(17(18)19-15)13-5-3-2-4-6-13/h2-8,11,22H,9-10H2,1H3/t18-/m1/s1
化学名
1,2,3,3a-tetrahydro-3aS-hydroxy-6-methyl-1-phenyl-4H-Pyrrolo[2,3-b]quinolin-4-one
别名
(S)-Blebbistatin; (-)-Blebbistatin; 856925-71-8; (S)-(-)-Blebbistatin; (S)-blebbistatin; Blebbistatin, (-)-; (-)Blebbistatin; Blebbistatin (S)-form [MI]; CHEBI:75388; Blebbistatin.
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: (1). 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。  (2). 该产品在溶液状态不稳定,请现配现用。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 58 mg/mL (198.4 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 1 mg/mL (3.42 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 10.0 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 1 mg/mL (3.42 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将 100 μL 10.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 1 mg/mL (3.42 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 10.0 mg/mL 澄清 DMSO 储备液加入900 μL 玉米油中,混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.4208 mL 17.1040 mL 34.2079 mL
5 mM 0.6842 mL 3.4208 mL 6.8416 mL
10 mM 0.3421 mL 1.7104 mL 3.4208 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
相关产品
联系我们