BGP-15 HCl

别名: BGP15 hydrochloride; BGP15 HCl; BGP15; N-(2-Hydroxy-3-(piperidin-1-yl)propoxy)nicotinimidamide dihydrochloride; 3-Pyridinecarboximidamide, N-(2-hydroxy-3-(1-piperidinyl)propoxy)-, hydrochloride (1:2); RLN2GTG4YS; N'-(2-hydroxy-3-piperidin-1-ylpropoxy)pyridine-3-carboximidamide;dihydrochloride; 3-Pyridinecarboximidamide, N-(2-hydroxy-3-(1-piperidinyl)propoxy)-, dihydrochloride; BGP 15; BGP-15 (z)-N-(2-羟基-3-(哌啶-1-基)丙氧基)烟酰胺双盐酸盐;N-[2-羟基-3-(1-哌啶基)丙氧基]-3-吡啶甲脒二盐酸盐
目录号: V12600 纯度: ≥98%
BGP-15 HCl 是一种有效的新型 PARP 抑制剂,可以预防小鼠心力衰竭和心房颤动。
BGP-15 HCl CAS号: 66611-37-8
产品类别: PARP
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of BGP-15 HCl:

  • BGP-15
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
BGP-15 HCl 是一种有效的新型 PARP 抑制剂,可以预防小鼠心力衰竭和心房颤动。 BGP-15 (200 μM) 可防止甲磺酸伊马替尼诱导的氧化损伤,减弱高能磷酸盐的消耗,通过阻止 p38 MAP 激酶和 JNK 激活来改变甲磺酸伊马替尼的信号传导作用,并诱导 Akt 和 GSK- 的磷酸化3测试版。体内研究表明,BGP-15 改善了两种 HF 和 AF 小鼠模型的心功能并减少了心律失常发作。在这些模型中,BGP-15 与 IGF1R 磷酸化增加相关。
生物活性&实验参考方法
靶点
PARP (IC50 =120 μM)
体外研究 (In Vitro)
200 μM 时,BGP-15 可抑制甲磺酸伊马替尼引起的氧化损伤,停止高能磷酸盐的消耗,并通过抑制 p38 MAP 损伤、JNK 激活以及传感 Akt 和 GSK-3beta 来修改甲磺酸伊马替尼的信号传导作用。 5]。
体内研究 (In Vivo)
在老年 mdx 小鼠中,BGP-15(15 mg/kg,颈部)对骨骼肌病理学没有影响 [1]。虽然没有阻止膈肌萎缩,但 10 天的 BGP-15 治疗显着增加了支架模型中的膈肌纤维功能(约 100%)。此外,通过防止与 PARP-1 抑制和 HSP72 激活相关的肌球蛋白 PTM,该疗法可增强隔膜内容和功能 [2]。在 Ntg 小鼠或正常野生型小鼠的独立队列中,使用形态学、心脏功能和心电图测量来评估 BGP-15(每天 15 mg/kg,盐水中)的效果。 BGP-15 治疗降低了肺重量和心房大小的增长。使用 BGP-15 药物可以预防心律失常或减轻其后果。在 HF+AF 范例中,BGP-15 处理与 PR 间隔相关联 [3]。在枕头喂养的兔子中,BGP-15(10 和 30 mg/kg)分别使玉米粥的含量提高了 50% 和 70%,但在正常兔子中则不然。经过 5 天的 BGP-15 治疗后,遗传性胰岛素抵抗 GK 的突变输注率以剂量依赖性方式增加。与二氧化碳相比,最有效的剂量是 20 mg/kg,这会增加 71% 的胰岛素负荷 [4]。
酶活实验
在Langendorff心脏灌注系统中研究了O-(3-哌啶-2-羟基-1-丙基)烟酰胺肟(BGP-15)对缺血再灌注损伤的保护作用。为了了解心脏保护的分子机制,研究了BGP-15对缺血再灌注诱导的活性氧(ROS)形成、脂质过氧化单链DNA断裂形成、NAD(+)分解代谢和内源性ADP核糖基化反应的影响。这些研究表明,BGP-15显著降低了再灌注心脏中乳酸脱氢酶、肌酸激酶和天冬氨酸转氨酶的渗漏,并降低了NAD(+)分解代谢的速率。此外,BGP-15显著降低了缺血再灌注诱导的核聚ADP核糖聚合酶(PARP)的自身ADP核糖基化和内质网伴侣GRP78的单ADP核糖基基化。这些数据增加了BGP-15可能对PARP具有直接抑制作用的可能性。这一假设在分离的酶上进行了测试,动力学分析显示混合型(非竞争性)抑制,K(i)=57+/-6μM。此外,BGP-15降低了再灌注心脏中ROS、脂质过氧化和单链DNA断裂的水平。这些数据表明,PARP可能是BGP-15的一个重要分子靶标,并且BGP-15通过抑制PARP活性来降低心脏缺血再灌注过程中的ROS水平和细胞损伤[6]。
细胞实验
在这项研究中,研究人员研究了著名的细胞抑制剂甲磺酸伊马替尼(格列卫)的心脏毒性作用,并提供了一种新型胰岛素增敏剂bp -15的心脏保护作用的证据。在Langendorff大鼠心脏灌注系统中评价甲磺酸伊马替尼的心脏毒性作用。采用(31)P NMR原位监测心肌高能磷酸水平(磷酸肌酸(PCr)和ATP)。蛋白氧化,脂质过氧化和信号通路的激活从冷冻夹住的心脏。甲磺酸伊马替尼(20mg /kg)长期治疗心脏导致心脏毒性,其特征是高能磷酸盐(PCr和ATP)耗损,蛋白质氧化和脂质过氧化显著增加。甲磺酸伊马替尼治疗诱导MAP激酶(包括ERK1/2、p38和JNK)的激活以及Akt和gsk -3 β的磷酸化。BGP-15 (200 μM)可抑制甲磺酸伊马替尼诱导的氧化损伤,减轻高能磷酸盐的消耗,通过抑制p38 MAP激酶和JNK活化改变甲磺酸伊马替尼的信号传导作用,诱导Akt和gsk -3 β磷酸化。bp -15对p38和JNK活化的抑制作用可能是显著的,因为这些激酶有助于离体灌注心脏的细胞死亡和炎症。[5]
动物实验
Male adult HF+AF and Ntg mice, who are approximately 4 months old, are given BGP-15 (15 mg/kg daily in saline) or left untreated (oral gavage with saline or no gavage) for 4 weeks. In the HF+AF model, gavage with saline has no effect on morphological or functional parameters. Thus, mice receiving saline injection and mice left untreated (no gavage) are grouped together and referred to as HF+AF control. ECG and echocardiography scans are carried out both before and after therapy.
Experimental protocols[3]
Protocol 1: Adult (~4 month) male HF+AF and Ntg mice were administered with BGP-15 (15 mg kg−1 per day in saline, N-Gene Research Laboratories) for 4 weeks by oral gavage or remained untreated (oral gavage with saline or no gavage). Gavage with saline had no effect on morphological or functional parameters in the HF+AF model (Supplementary Fig. 3). Therefore, untreated mice (no gavage) and mice administered saline are combined and referred to as HF+AF control. Echocardiography and ECG studies were performed before and after treatment.[3]
Protocol 2: To determine whether BGP-15 provided protection via HSP70, BGP-15 (15 mg kg−1 per day, oral gavage) was administered to adult (~14 weeks) male and female HF+AF mice deficient for HSP70 (HF+AF-HSP70 KO) for 4 weeks.[3]
Protocol 3: To assess whether an increase in HSP70 could mediate protection in the HF+AF model, male HF+AF mice overexpressing HSP70 (HF+AF-HSP70 Tg) were generated and characterized at ~12–13 weeks.[3]
Protocol 4: To examine whether overexpression of IGF1R in the heart could provide protection in the HF+AF model, male HF+AF mice overexpressing IGF1R (HF+AF-IGF1R Tg) were generated and characterized at ~16–17 weeks.[3]
Protocol 5: To determine whether IGF1R could mediate protection in the HF+AF model independent of HSP70, male and female HF+AF-IGF1R Tg-HSP70 KO mice were generated and characterized at ~11 weeks.[3]
Protocol 6: To examine whether BGP-15 had the capacity to provide protection in an additional model with HF and AF, 11- to 12-month-old male MURC Tg were administered with BGP-15 (15 mg kg−1 per day, oral gavage) or saline for 4 weeks.[3]
To assess whether BGP-15 administration could confer effects on an already established dystrophic pathology, 20-week-old mdx and 8-week-old dko mice were administered BGP-15 (15 mg/kg in 0.9% sterile saline; N-Gene Research Laboratories Inc., New York, NY) daily via oral gavage for 4 (dko) or 5 (mdx) weeks. Age-matched vehicle-treated dystrophic and healthy wild-type control (C57BL/10) mice received an equivalent volume of 0.9% sterile saline via daily oral gavage. Because of the severity of the dko phenotype, a shorter treatment period was used with a significant number of mice reaching humane end point criteria (ie, kyphosis score of 5 and sustained 15% loss of body mass) after 12 weeks of age. The average lifespan of mice in our dko colony was approximately 14 to 15 weeks, with the severity of the dystrophic pathology at 8 weeks of age (when treatment commenced) indicated by an average kyphosis score of 2.5. The kyphosis score indicates the severity of spinal curvature on palpation of conscious mice and ranked 1 to 5, with 1 indicating no spinal deformity and 5 being the most severe. To assess the effect of BGP-15 administration as a preventive treatment for the dystrophic cardiomyopathy and to confirm previous findings on skeletal muscles of young mice,14 4-week-old dko mice were administered BGP-15 (15 mg/kg in 0.9% sterile saline daily via oral gavage) for 5 to 6 weeks, with other groups of aged-matched dko and C57BL/10 mice treated similarly with vehicle only. Because BGP-15 is a hydroxylamine derivative that affects only stressed cells, a group of C57BL/10 mice treated with BGP-15 was not included.10,14,34 Previous studies investigating BGP-15 effects on skeletal muscle and heart observed no morphological or functional changes in either tissue, in wild-type mice after long-term treatment.14,34 To assess Hsp72 induction via BGP-15, 4- and 10-week-old dko mice and age-matched C57BL/10 mice were administered a single bolus of BGP-15 (15 mg/kg) via oral gavage, and the tibialis anterior (TA) muscles, heart, and diaphragm were excised 6 hours later, frozen in liquid nitrogen, and stored at −80°C for later analyses.[1]
参考文献

[1]. BGP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle. Am J Pathol. 2016 Dec;186(12):3246-3260.

[2]. The chaperone co-inducer BGP-15 alleviates ventilation-induced diaphragm dysfunction. Sci Transl Med. 2016 Aug 3;8(350):350ra10.

[3]. The small-molecule BGP-15 protects against heart failure and atrial fibrillation in mice. Nat Commun. 2014 Dec 9;5:5705.

[4]. Improvement of insulin sensitivity by a novel drug candidate, BGP-15, in different animal studies. Metab Syndr Relat Disord. 2014 Mar;12(2):125-31.

[5]. BGP-15, a PARP-inhibitor, prevents imatinib-induced cardiotoxicity by activating Akt and suppressing JNK and p38 MAP kinases. Mol Cell Biochem. 2012 Jun;365(1-2):129-37.

[6]. BGP-15, a nicotinic amidoxime derivate protecting heart from ischemia reperfusion injury through modulation of poly(ADP-ribose) polymerase. Biochem Pharmacol. 2000 Apr 15;59(8):937-45.

其他信息
Duchenne muscular dystrophy is a severe and progressive striated muscle wasting disorder that leads to premature death from respiratory and/or cardiac failure. We have previously shown that treatment of young dystrophic mdx and dystrophin/utrophin null (dko) mice with BGP-15, a coinducer of heat shock protein 72, ameliorated the dystrophic pathology. We therefore tested the hypothesis that later-stage BGP-15 treatment would similarly benefit older mdx and dko mice when the dystrophic pathology was already well established. Later stage treatment of mdx or dko mice with BGP-15 did not improve maximal force of tibialis anterior (TA) muscles (in situ) or diaphragm muscle strips (in vitro). However, collagen deposition (fibrosis) was reduced in TA muscles of BGP-15-treated dko mice but unchanged in TA muscles of treated mdx mice and diaphragm of treated mdx and dko mice. We also examined whether BGP-15 treatment could ameliorate aspects of the cardiac pathology, and in young dko mice it reduced collagen deposition and improved both membrane integrity and systolic function. These results confirm BGP-15's ability to improve aspects of the dystrophic pathology but with differing efficacies in heart and skeletal muscles at different stages of the disease progression. These findings support a role for BGP-15 among a suite of pharmacological therapies for Duchenne muscular dystrophy and related disorders.[1]
Ventilation-induced diaphragm dysfunction (VIDD) is a marked decline in diaphragm function in response to mechanical ventilation, which has negative consequences for individual patients' quality of life and for the health care system, but specific treatment strategies are still lacking. We used an experimental intensive care unit (ICU) model, allowing time-resolved studies of diaphragm structure and function in response to long-term mechanical ventilation and the effects of a pharmacological intervention (the chaperone co-inducer BGP-15). The marked loss of diaphragm muscle fiber function in response to mechanical ventilation was caused by posttranslational modifications (PTMs) of myosin. In a rat model, 10 days of BGP-15 treatment greatly improved diaphragm muscle fiber function (by about 100%), although it did not reverse diaphragm atrophy. The treatment also provided protection from myosin PTMs associated with HSP72 induction and PARP-1 inhibition, resulting in improvement of mitochondrial function and content. Thus, BGP-15 may offer an intervention strategy for reducing VIDD in mechanically ventilated ICU patients.[2]
Heart failure (HF) and atrial fibrillation (AF) share common risk factors, frequently coexist and are associated with high mortality. Treatment of HF with AF represents a major unmet need. Here we show that a small molecule, BGP-15, improves cardiac function and reduces arrhythmic episodes in two independent mouse models, which progressively develop HF and AF. In these models, BGP-15 treatment is associated with increased phosphorylation of the insulin-like growth factor 1 receptor (IGF1R), which is depressed in atrial tissue samples from patients with AF. Cardiac-specific IGF1R transgenic overexpression in mice with HF and AF recapitulates the protection observed with BGP-15. We further demonstrate that BGP-15 and IGF1R can provide protection independent of phosphoinositide 3-kinase-Akt and heat-shock protein 70; signalling mediators often defective in the aged and diseased heart. As BGP-15 is safe and well tolerated in humans, this study uncovers a potential therapeutic approach for HF and AF.[3]
Background: Insulin resistance has been recognized as the most significant predictor of further development of type 2 diabetes mellitus (T2DM). Here we investigated the effect of a heat shock protein (HSP) co-inducer, BGP-15, on insulin sensitivity in different insulin-resistant animal models and compared its effect with insulin secretagogues and insulin sensitizers. Methods: Insulin sensitivity was assessed by the hyperinsulinemic euglycemic glucose clamp technique in normal and cholesterol-fed rabbits and in healthy Wistar and Goto-Kakizaki (GK) rats in dose-ranging studies. We also examined the effect of BGP-15 on streptozotocin-induced changes in the vasorelaxation of the aorta in Sprague-Dawley rats. Results: BGP-15 doses of 10 and 30 mg/kg increased insulin sensitivity by 50% and 70%, respectively, in cholesterol-fed but not in normal rabbits. After 5 days of treatment with BGP-15, the glucose infusion rate was increased in a dose-dependent manner in genetically insulin-resistant GK rats. The most effective dose was 20 mg/kg, which showed a 71% increase in insulin sensitivity compared to control group. Administration of BGP-15 protected against streptozotocin-induced changes in vasorelaxation, which was similar to the effect of rosiglitazone. Conclusion: Our results indicate that the insulin-sensitizing effect of BGP-15 is comparable to conventional insulin sensitizers. This might be of clinical utility in the treatment of T2DM.[4]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C14H24CL2N4O2
分子量
351.27
精确质量
350.128
元素分析
C, 47.87; H, 6.89; Cl, 20.19; N, 15.95; O, 9.11
CAS号
66611-37-8
相关CAS号
66611-38-9; 66611-37-8 (HCl)
PubChem CID
9884807
外观&性状
White solid powder
LogP
2.807
tPSA
81.47
氢键供体(HBD)数目
4
氢键受体(HBA)数目
5
可旋转键数目(RBC)
6
重原子数目
22
分子复杂度/Complexity
306
定义原子立体中心数目
0
SMILES
Cl[H].Cl[H].O([H])C([H])(C([H])([H])O/N=C(/C1=C([H])N=C([H])C([H])=C1[H])\N([H])[H])C([H])([H])N1C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H]
InChi Key
ISGGVCWFTPTHIX-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H22N4O2.2ClH/c15-14(12-5-4-6-16-9-12)17-20-11-13(19)10-18-7-2-1-3-8-18;;/h4-6,9,13,19H,1-3,7-8,10-11H2,(H2,15,17);2*1H
化学名
N'-(2-hydroxy-3-piperidin-1-ylpropoxy)pyridine-3-carboximidamide;dihydrochloride
别名
BGP15 hydrochloride; BGP15 HCl; BGP15; N-(2-Hydroxy-3-(piperidin-1-yl)propoxy)nicotinimidamide dihydrochloride; 3-Pyridinecarboximidamide, N-(2-hydroxy-3-(1-piperidinyl)propoxy)-, hydrochloride (1:2); RLN2GTG4YS; N'-(2-hydroxy-3-piperidin-1-ylpropoxy)pyridine-3-carboximidamide;dihydrochloride; 3-Pyridinecarboximidamide, N-(2-hydroxy-3-(1-piperidinyl)propoxy)-, dihydrochloride; BGP 15; BGP-15
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
H2O : ~100 mg/mL (~284.68 mM)
DMSO : ~11.33 mg/mL (~32.25 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (7.12 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (7.12 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (7.12 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 100 mg/mL (284.68 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.8468 mL 14.2341 mL 28.4681 mL
5 mM 0.5694 mL 2.8468 mL 5.6936 mL
10 mM 0.2847 mL 1.4234 mL 2.8468 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Phase II/III, multi-centre, double-blind, parallel assignment, randomized, placebo-controlled study to evaluate the preventive effect of BGP-15 on the hospitalisation of newly diagnosed COVID-19 patients
EudraCT: 2020-005539-62
Phase: Phase 2, Phase 3
Status: Prematurely Ended
Date: 2021-03-04
A phase 2 study on the clinical efficacy of adjuvant BGP-15 treatment additional to beta-blocker bisoprolol in patients with inappropriate sinus tachycardia
EudraCT: 2020-003005-61
Phase: Phase 2
Status: Ongoing
Date: 2020-09-30
A Randomized, Double-blind, Placebo-controlled, Parallel Group, Multiple Dose, Multicenter Study to Assess the Safety and Efficacy of BGP-15 when Administered Orally Once or Twice Daily as Add-on Therapy to the Combination of Metformin and Sulfonylurea Treatment or Metformin Alone in Patients with Type 2 Diabetes Mellitus
EudraCT: 2009-013328-21
Phase: Phase 2
Status: Prematurely Ended
Date: 2011-03-09
RANDOMIZED DOUBLE-BLIND, MULTIPLE DOSE, PLACEBO-CONTROLLED STUDY TO DETERMINE THE INSULIN SENSITIZING EFFECT OF BGP-15 IN PATIENTS WITH INSULIN RESISTANCE
EudraCT: 2005-000872-41
Phase: Phase 2
Status: Completed
Date: 2005-04-19
生物数据图片
  • Representative heart photos from control and BGP-15-treated Ntg and HF+AF mice. Nat Commun . 2014 Dec 9:5:5705.
  • Transgenic overexpression of IGF1R in the HF+AF mouse model resembles BGP-15-mediated protection. Nat Commun . 2014 Dec 9:5:5705.
  • BGP-15 treatment affects IGF1R phosphorylation, ganglioside GM3 levels and content of IGF1R with caveolin-1 and -3. Nat Commun . 2014 Dec 9:5:5705.
  • Collagen infiltration, membrane integrity, and echocardiographic analyses of the structure and function of hearts from young dko mice administered BGP-15 as an early-stage treatment compared with saline-treated dko and C57BL/10 control mice. Am J Pathol . 2016 Dec;186(12):3246-3260.
相关产品
联系我们