规格 | 价格 | 库存 | 数量 |
---|---|---|---|
500mg |
|
||
1g |
|
||
5g |
|
||
Other Sizes |
|
参考文献 |
|
---|---|
其他信息 |
Benfotiamine is a thioester that is a synthetic analogue of thiamine obtained by acylative cleavage of the thiazole ring and O-phospohorylation. It has a role as an immunological adjuvant, a nutraceutical, an antioxidant, a provitamin B1 and a protective agent. It is an aminopyrimidine, a member of formamides, an organic phosphate and a thioester. It is functionally related to a thiamine(1+).
Benfotiamine has been investigated for the treatment and prevention of Diabetic Nephropathy and Diabetes Mellitus, Type 2. See also: Benfotiamine (annotation moved to). |
分子式 |
C19H23N4O6PS
|
---|---|
分子量 |
466.4488
|
精确质量 |
466.107
|
CAS号 |
22457-89-2
|
相关CAS号 |
147317-17-7 (semihydrate);22457-89-2 (free acid);
|
PubChem CID |
3032771
|
外观&性状 |
White to off-white solid powder
|
密度 |
1.4±0.1 g/cm3
|
沸点 |
745.1±70.0 °C at 760 mmHg
|
熔点 |
165ºC
|
闪点 |
404.4±35.7 °C
|
蒸汽压 |
0.0±2.6 mmHg at 25°C
|
折射率 |
1.645
|
LogP |
1.81
|
tPSA |
191.05
|
氢键供体(HBD)数目 |
3
|
氢键受体(HBA)数目 |
10
|
可旋转键数目(RBC) |
10
|
重原子数目 |
31
|
分子复杂度/Complexity |
697
|
定义原子立体中心数目 |
0
|
SMILES |
CC1=NC=C(C(=N1)N)CN(C=O)/C(=C(/CCOP(=O)(O)O)\SC(=O)C2=CC=CC=C2)/C
|
InChi Key |
BTNNPSLJPBRMLZ-LGMDPLHJSA-N
|
InChi Code |
InChI=1S/C19H23N4O6PS/c1-13(23(12-24)11-16-10-21-14(2)22-18(16)20)17(8-9-29-30(26,27)28)31-19(25)15-6-4-3-5-7-15/h3-7,10,12H,8-9,11H2,1-2H3,(H2,20,21,22)(H2,26,27,28)/b17-13-
|
化学名 |
S-[(Z)-2-[(4-amino-2-methylpyrimidin-5-yl)methyl-formylamino]-5-phosphonooxypent-2-en-3-yl] benzenecarbothioate
|
别名 |
CB 8088 Berdi Betivina BiotaminBRN-0771326 BTMP CB-8088 CB8088 Benfotiamine S-benzoylthiamine O-monophosphate
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ≥ 50 mg/mL (~107.19 mM)
H2O : ~0.67 mg/mL (~1.44 mM) |
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 3 mg/mL (6.43 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 30.0 mg/mL 澄清的 DMSO 储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL 生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 3 mg/mL (6.43 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 30.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 3 mg/mL (6.43 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 3.12 mg/mL (6.69 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶 (<60°C). 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.1439 mL | 10.7193 mL | 21.4385 mL | |
5 mM | 0.4288 mL | 2.1439 mL | 4.2877 mL | |
10 mM | 0.2144 mL | 1.0719 mL | 2.1439 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT02292238 | COMPLETEDWITH RESULTS | Drug: Benfotiamine | Alzheimer's Disease | Burke Medical Research Institute | 2015-02-15 | Phase 2 |
NCT01868191 | UNKNOWN STATUS | Drug: Benfotiamine Drug: Placebo for benfotiamine |
Diabetic Neuropathies | Diabetes Schwerpunktpraxis | 2013-07 | Phase 3 |
NCT00565318 | COMPLETED | Drug: Benfotiamine Drug: Placebo |
Diabetic Nephropathy | University Medical Center Groningen | 2007-12 | Phase 4 |
NCT00785460 | COMPLETED | Drug: Benfotiamine | Healthy Subjects | Ruhr University of Bochum | 2008-01 | Phase 3 |
NCT03892707 | COMPLETEDWITH RESULTS | Drug: Exposure of interest (within routine clinical practice): Vitamin B complexes Milgamma® and Milgamma® compositum |
Acute Non-specific Low Back Pain | Woerwag Pharma LLC | 2018-12-15 |
Functional characterization of benfotiamine effects in LPS-stimulated BV-2 microglia. (A) Real-time monitoring of BV-2 cell viability using xCELLigence RTCA analyzer. Representative graph showing the rate of proliferation in cells incubated in control medium (red line), medium with 1 μg/ml LPS (black line), or cells pretreated with benfotiamine, 50 μM (pink line), 100 μM (blue line) or 250 μM (green line) and then treated with LPS for 24 h. (B) Benfotiamine- induced alterations in cell morphology were analyzed using phase-contrast microscopy (left panels), whereas cell surface area was quantified by Phalloidin /Hoechst fluorescent staining (red/blue) microscopy (right panels), using AxioVisionRel 4.6 software. Insets: cell surface area was measured in five areas (138 × 104 μm2) per each cover-slip (n = 3) per experimental group in three independent experiments. (C) Bars present mean surface areas (± SEM) obtained from data presented in Fig. 1B. (D) Cell viability was assessed by crystal violet staining and results are displayed as percentage of control ± SEM (n = 3). *P < 0.05 control vs. LPS-induced BV-2 cells, # LPS vs. benfotiamine pretreated LPS activated BV-2 cells. Scale bar: 20 μm. Bozic I, et al. PLoS One. 2015 Feb 19;10(2):e0118372. td> |
Effect of benfotiamine on LPS-induced production of NO. (A) Benfotiamine suppressed LPS-induced release of NO. (B) Expression of iNOS-mRNA in LPS-stimulated BV-2 cells (black bar) and cells pretreated with benfotiamine (gray bars). The levels of iNOS-mRNA are expressed relative to the expression of GAPDH-mRNA as an internal control. (C) Expression of iNOS at the protein level, as determined by Western blot. Graph shows mean iNOS protein abundance (± SEM), from n = 3 separate determinations, expressed relative to the abundance of β-tubulin in each lane. Representative Western blot of iNOS expression. (D) Immunofluorescence labeling of BV-2 cells against iNOS. Significance inside the graphs: *p < 0.05 control vs. LPS-induced BV-2 cells, # LPS vs. benfotiamine pretreated LPS activated BV-2 cells. Scale bar: 20 μm.Bozic I, et al. PLoS One. 2015 Feb 19;10(2):e0118372. td> |
The effect of benfotiamine on LPS—induced expression of proinflammatory effector molecules. (A) Expression of prostaglandin—endoperoxidase synthase 2 (PTGS2) at mRNA level in BV-2 cells. Expression of PTGS2-mRNA was assessed by RT-PCR, in control culture (white bar), LPS-treated culture (black bar) and cultures pre-treated with benfotiamine, 6 h following addition of LPS. PTGS2-mRNA abundance was expressed relative to the abundance of GAPDH-mRNA, as an internal control. (B) Expression of COX-2 at the protein level, determined by Western blot analysis. Bars show Cox-2/β-actin expression ratio relative to control (100%) ± SEM, from n = 3 separate determinations. Significance levels shown inside the graphs: *p < 0.05 control vs. LPS-induced BV-2 cells, # LPS vs. benfotiamine pretreated LPS activated BV-2 cells.Bozic I, et al. PLoS One. 2015 Feb 19;10(2):e0118372. td> |