规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
体外研究 (In Vitro) |
虾青素(50、100、150 和 200 µM;48 小时)抑制 DU145 细胞生长(IC50<200 µM)[1]。通过防止增殖、促进细胞凋亡、阻碍迁移和侵袭,虾青素(200 µM;24 小时)可降低 STAT3 和相关通路蛋白的表达(在蛋白和 mRNA 水平)[1]。此外,虾青素通过在蛋白质水平下调 VEGF 来保护 RPE 细胞免受氧化应激和高葡萄糖引起的异常激活 [2]。在 K562 细胞中,虾青素(1-50 µM;72 小时)以剂量和时间依赖性方式增加 PPARγ 蛋白的表达 [3]。
|
---|---|
体内研究 (In Vivo) |
在不穿衣服的小鼠中,虾青素(200 mg/kg;每天一次灌胃,持续三周)可防止肿瘤异种移植物 (DU145) 的形成 [1]。在大鼠中,虾青素(125 或 500 mg/kg;在动物饲料中;7 天)可显着降低氧化应激并提供心脏保护作用 [4]。
|
细胞实验 |
细胞凋亡分析 [1]
细胞类型: DU145 细胞 测试浓度: 200 µM(预孵育) 孵育持续时间:24小时 实验结果:凋亡细胞百分比从8.5%增加到13.1%(与空白对照相比)。 细胞迁移测定[1] 细胞类型: DU145 细胞 测试浓度: 200 µM 孵育时间:24小时 实验结果:DU145细胞表现出迁移和侵袭减弱(大约41%的细胞不能从一个室移动到另一个室,36%的细胞不能从一个室移动到另一个室)与对照组相比, 的细胞无法通过 Transwell 膜)。 细胞增殖测定[2] 细胞类型: ARPE-19 细胞 测试浓度: 50 µM(孵育前) 孵育时间:7天 实验结果:当暴露于高葡萄糖时,细胞增殖显着减弱。 蛋白质印迹分析[1] 细胞类型: DU145 细胞 测试浓度: 200 µM 孵育时间: 24 h 实验结果: STAT3在蛋白和mRNA水平上的表达均减少(下调JAK2、BCL-2和NF-κB的蛋白表达) , 上调 BAX , 蛋白表达 |
动物实验 |
Animal/Disease Models: Nude mouse (approximately 20 grams; DU145 tumor xenograft model) [1].
Doses: 200 mg/kg Route of Administration: intragastric (po) (po)administration; one time/day for 3 weeks. Experimental Results: It has a significant inhibitory effect on tumor growth. Animal/Disease Models: Female C57BL/6 mice (7 weeks old) [4]. Doses: 125 or 500 mg/kg Route of Administration: Animal feed; 7 days. Experimental Results: The mean infarct size was Dramatically diminished to 45.1% and 39.1% in the two treatment groups (125 and 500 mg/kg), respectively. The myocardial salvage rates in the 125 mg/kg group and 500 mg/kg group were 26% and 36%, respectively. 9-HETE levels were Dramatically diminished in a dose-dependent manner. 9-HETE is a regioisomer oxidation product of arachidonic acid and is thought to be a product of free radical-mediated oxidation. |
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
Apparent astaxanthin (3,3'-dihydroxy-beta,beta-carotene-4,4'-dione) digestibility coefficients (ADC) and carotenoid compositions of the muscle, liver, whole kidney and plasma were compared in Atlantic salmon (Salmo salar) and Atlantic halibut (Hippoglossus hippoglossus) fed a diet supplemented with 66 mg astaxanthin kg(-1) dry matter for 112 days. The astaxanthin source consisted of 75% all-E-, 3% 9Z- and 22% 13Z-astaxanthin, of (3R,3'R)-, (3R,3'S; meso)-, and (3S,3'S)-astaxanthin in a 1:2:1 ratio. The ADC of astaxanthin was significantly higher in Atlantic halibut than in Atlantic salmon after 56 and 112 days of feeding (P < 0.05). The ADC of all-E-astaxanthin was significantly higher than ADC of 9Z-astaxanthin (P < 0.05). Considerably more carotenoids were present in all plasma and tissue samples of salmon than in halibut. Retention of astaxanthin in salmon muscle was 3.9% in salmon and 0 in halibut. All-E-astaxanthin accumulated selectively in the muscle of salmon, and in plasma of salmon and halibut compared with diet. 13Z-astaxanthin accumulated selectively in liver and whole kidney of salmon and halibut, when compared with plasma. A reductive pathway for astaxanthin metabolism in halibut similar to that of salmon was shown by the presence of 3',4'-cis and trans glycolic isomers of idoxanthin (3,3',4'-trihydroxy-beta,beta-carotene-4'-one) in plasma, liver and whole kidney. In conclusion, the higher ADC of astaxanthin in halibut than Atlantic salmon may be explained by lower feed intake in halibut, and the lower retention of astaxanthin by a higher capacity to transform astaxanthin metabolically. The present studies were performed to investigate the metabolism of astaxanthin (Ax) in Atlantic salmon, especially in the liver of salmon. The investigations were undertaken in vivo salmon that were fed a diet containing 60 ppm 15, 15' (14)C-labelled Ax prior to sacrifice. The samples of blood, bile, liver, gastrointestinal tract and contents, muscle, skin, remaining carcass and feces were taken for scintillation counting. The highest radioactivity (71.36%) of (14)C-labelled Ax was found in the gastrointestinal contents and feces, 7.13% in the bile and 10.68% in the samples of liver, muscle, and skin at the end of the experiments. The metabolites of (14)C-labelled Ax were extracted from the bile of the salmon and analyzed using thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC). Predominant (14)C-labelled Ax and its cis-isomers were found and no conjugation of (14)C-labelled Ax was observed. These results indicate that (14)C-labelled Ax was not conjugated into larger colorless compound in Atlantic salmon liver. Metabolism / Metabolites One force-fed meal containing labelled (14)C-astaxanthin and (3)H-canthaxanthin or (3)H-zeaxanthin was given to eight mature female rainbow trout. Ninety-six hours after the test meal ingestion, trout were killed and liver, skin, muscle and ovaries were dissected out. Astaxanthin accumulated slightly more in muscle than canthaxanthin but in all tissues astaxanthin and canthaxanthin were very significantly more concentrated than zeaxanthin. (3)H-zeaxanthin metabolites were found only in the liver, whereas (14)C-phoenicoxanthin was the only metabolic pigment from (14)C-astaxanthin detected and was found in all investigated tissues. (3)H-astaxanthin was found in the liver of all trout indicating that (3)H-canthaxanthin and (3)H-zeaxanthin were astaxanthin precursors, and that salmonids probably possess carotenoid oxidative pathways unknown until now. Labelled retinol1 and retinol2 were detected only in the liver and (3)H-zeaxanthin was largely the predominant precursor of these two vitamin A forms. The effects of feed intake, growth rate and temperature (8 and 12 degrees C) on apparent digestibility coefficients (ADC), blood uptake of individual astaxanthin E/Z isomers and metabolism of astaxanthin (3,3'-dihydroxy-beta,beta-carotene-4,4'-dione) were determined in Atlantic salmon. Accumulation of idoxanthin (3,4,3'-trihydroxy-beta,beta-carotene-4-one) in plasma was used to indicate metabolic transformation of astaxanthin. |
毒性/毒理 (Toxicokinetics/TK) |
Interactions
The present study investigated the in vivo protective effect of astaxanthin isolated from the Xanthophyllomyces dendrorhous mutant against ethanol-induced gastric mucosal injury in rats. The rats were treated with 80% ethanol for 3 d after pretreatment with two doses of astaxanthin (5 and 25 mg/kg of body weight respectively) for 3 d, while the control rats received only 80% ethanol for 3 days. The oral administration of astaxanthin (5 and 25 mg/kg of body weight) showed significant protection against ethanol-induced gastric lesion and inhibited elevation of the lipid peroxide level in gastric mucosa. In addition, pretreatment with astaxanthin resulted in a significant increase in the activities of radical scavenging enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. A histologic examination clearly indicated that the acute gastric mucosal lesion induced by ethanol nearly disappeared after pretreatment with astaxanthin. |
参考文献 |
|
其他信息 |
Astaxanthin is a carotenone that consists of beta,beta-carotene-4,4'-dione bearing two hydroxy substituents at positions 3 and 3' (the 3S,3'S diastereomer). A carotenoid pigment found mainly in animals (crustaceans, echinoderms) but also occurring in plants. It can occur free (as a red pigment), as an ester, or as a blue, brown or green chromoprotein. It has a role as an anticoagulant, an antioxidant, a food colouring, a plant metabolite and an animal metabolite. It is a carotenone and a carotenol. It derives from a hydride of a beta-carotene.
Astaxanthin is a keto-carotenoid in the terpenes class of chemical compounds. It is classified as a xanthophyll but it is a carotenoid with no vitamin A activity. It is found in the majority of aquatic organisms with red pigment. Astaxanthin has shown to mediate anti-oxidant and anti-inflammatory actions. It may be found in fish feed or some animal food as a color additive. Astaxanthin has been reported in Agrobacterium aurantiacum, Phaffia rhodozyma, and other organisms with data available. Astaxanthin is a natural and synthetic xanthophyll and nonprovitamin A carotenoid, with potential antioxidant, anti-inflammatory and antineoplastic activities. Upon administration, astaxanthin may act as an antioxidant and reduce oxidative stress, thereby preventing protein and lipid oxidation and DNA damage. By decreasing the production of reactive oxygen species (ROS) and free radicals, it may also prevent ROS-induced activation of nuclear factor-kappa B (NF-kB) transcription factor and the production of inflammatory cytokines such as interleukin-1beta (IL-1b), IL-6 and tumor necrosis factor-alpha (TNF-a). In addition, astaxanthin may inhibit cyclooxygenase-1 (COX-1) and nitric oxide (NO) activities, thereby reducing inflammation. Oxidative stress and inflammation play key roles in the pathogenesis of many diseases, including cardiovascular, neurological, autoimmune and neoplastic diseases. Drug Indication Investigated for use/treatment in eye disorders/infections, cancer/tumors (unspecified), and asthma. Therapeutic Uses For the current study, it was hypothesized that oral Cardax /disodium disuccinate astaxanthin/ administration would inhibit oxidative damage of multiple relevant biological targets in a representative, well-characterized murine peritoneal inflammation model. A previously developed mass spectrometry-based (LC/ESI/MS/MS) approach was used to interrogate multiple distinct pathways of oxidation in a black mouse (C57/BL6) model system. In vivo markers of oxidant stress from peritoneal lavage samples (supernatants) were evaluated in mice on day eight (8) after treatment with either Cardax or vehicle (lipophilic emulsion without drug) orally by gavage at 500 mg/kg once per day for seven (7) days at five (5) time points: (1) baseline prior to treatment (t=0); (2) 16 h following intraperitoneal (i.p.) injection with thioglycollate to elicit a neutrophilic infiltrate; (3) 4 h following i.p. injection of yeast cell wall (zymosan; t=16 h/4 h thioglycollate+zymosan); (4) 72 h following i.p. injection with thioglycollate to elicit monocyte/macrophage infiltration; and (5) 72 h/4 h thioglycollate+zymosan. A statistically significant sparing effect on the arachidonic acid (AA) and linoleic acid (LA) substrates was observed at time points two and five. When normalized to the concentration of the oxidative substrates, statistically significant reductions of 8-isoprostane-F(2alpha) (8-iso-F(2alpha)) at time point three (maximal neutrophil recruitment/activation), and 5-HETE, 5-oxo-EET, 11-HETE, 9-HODE, and PGF(2alpha) at time point five (maximal monocyte/macrophage recruitment/activation) were observed. Subsequently, the direct interaction of the optically inactive stereoisomer of Cardax (meso-dAST) with human 5-lipoxygenase (5-LOX) was evaluated in vitro with circular dichroism (CD) and electronic absorption (UV/Vis) spectroscopy, and subsequent molecular docking calculations were made using mammalian 15-LOX as a surrogate (for which XRC data has been reported). The results suggested that the meso-compound was capable of interaction with, and binding to, the solvent-exposed surface of the enzyme. These preliminary studies provide the foundation for more detailed evaluation of the therapeutic effects of this compound on the 5-LOX enzyme, important in chronic diseases such as atherosclerosis, asthma, and prostate cancer in humans. /Disodium disuccinate astaxanthin/ The composition of atherosclerotic plaques, not just macroscopical lesion size, has been implicated in their susceptibility to rupture and the risk of thrombus formation. By focusing on the quality of lipids, macrophages, apoptosis, collagen, metalloproteinase expression and plaque integrity, we evaluated the possible anti-atherosclerotic effect of the antioxidants alpha-tocopherol and astaxanthin in Watanabe heritable hyperlipidemic (WHHL) rabbits. Thirty-one WHHL rabbits were divided into three groups and were fed a standard diet, as controls (N =10), or a standard diet with the addition of 500 mg alpha-tocopherol per kg feed (N =11) or 100 mg astaxanthin per kg feed (N =10) for 24 weeks. We found that both antioxidants, particularly astaxanthin, significantly decreased macrophage infiltration in the plaques although they did not affect lipid accumulation. All lesions in the astaxanthin-treated rabbits were classified as early plaques according to the distribution of collagen and smooth muscle cells. Both antioxidants also improved plaque stability and significantly diminished apoptosis, which mainly occurred in macrophages, matrix metalloproteinase three expressions and plaque ruptures. Although neither antioxidant altered the positive correlations between the lesion size and lipid accumulation, the lesion size and apoptosis were only positively correlated in the control group. Astaxanthin and alpha-tocopherol may improve plaque stability by decreasing macrophage infiltration and apoptosis in this atherosclerotic setting. Apoptosis reduction by alpha-tocopherol and astaxanthin may be a new anti-atherogenic property of these antioxidants. Exptl Ther: Astaxanthin, a carotenoid without vitamin A activity, may exert antitumor activity through the enhancement of immune responses. Here, we determined the effects of dietary astaxanthin on tumor growth and tumor immunity against transplantable methylcholanthrene-induced fibrosarcoma (Meth-A tumor) cells. These tumor cells express a tumor antigen that induces T cell-mediated immune responses in syngenic mice. BALB/c mice were fed astaxanthin (0.02%, 40 micrograms/kg body wt/day in a beadlet form) mixed in a chemically defined diet starting zero, one, and three weeks before subcutaneous inoculation with tumor cells (3 x 10(5) cells, 2 times the minimal tumorigenic dose). Three weeks after inoculation, tumor size and weight were determined. We also determined cytotoxic T lymphocyte (CTL) activity and interferon-gamma (IFN-gamma) production by tumor-draining lymph node (TDLN) and spleen cells by restimulating cells with Meth-A tumor cells in culture. The astaxanthin-fed mice had significantly lower tumor size and weight than controls when supplementation was started one and three weeks before tumor inoculation. This antitumor activity was paralleled with higher CTL activity and IFN-gamma production by TDLN and spleen cells in the astaxanthin-fed mice. CTL activity by TDLN cells was highest in mice fed astaxanthin for three weeks before inoculation. When the astaxanthin-supplemented diet was started at the same time as tumor inoculation, none of these parameters were altered by dietary astaxanthin, except IFN-gamma production by spleen cells. Total serum astaxanthin concentrations were approximately 1.2 mumol/l when mice were fed astaxanthin (0.02%) for four weeks and appeared to increase in correlation with the length of astaxanthin supplementation. Our results indicate that dietary astaxanthin suppressed Meth-A tumor cell growth and stimulated immunity against Meth-A tumor antigen. Exptl Ther: In the current study, the improved oral bioavailability of a synthetic astaxanthin derivative (Cardax; disodium disuccinate astaxanthin) was utilized to evaluate its potential effects as a cardioprotective agent after 7-day subchronic oral administration as a feed supplement to Sprague-Dawley rats. Animals received one of two concentrations of Cardax in feed (0.1 and 0.4%; approximately 125 and 500 mg/kg/day, respectively) or control feed without drug for 7 days prior to the infarct study carried out on day 8. Thirty minutes of occlusion of the left anterior descending (LAD) coronary artery was followed by 2 hr of reperfusion prior to sacrifice, a regimen which resulted in a mean infarct size (IS) as a percentage (%) of the area at risk (AAR; IS/AAR,%) of 61 + or - 1.8%. The AAR was quantified by Patent blue dye injection, and IS was determined by triphenyltetrazolium chloride (TTC) staining. Cardax at 0.1 and 0.4% in feed for 7 days resulted in a significant mean reduction in IS/AAR,% to 45 + or - 2.0% (26% salvage) and 39 + or - 1.5% (36% salvage), respectively. Myocardial levels of free astaxanthin achieved after 7-day supplementation at each of the two concentrations (400 + or - 65 nM and 1634 + or - 90 nM, respectively) demonstrated excellent solid-tissue target organ loading after oral supplementation. Parallel trends in reduction of plasma levels of multiple lipid peroxidation products with disodium disuccinate astaxanthin supplementation were observed, consistent with the documented in vitro antioxidant mechanism of action. These results extend the potential utility of this compound for cardioprotection to the elective human cardiovascular patient population, for which 7-day oral pre-treatment (as with statins) provides significant reductions in induced periprocedural infarct size. /Disodium disuccinate astaxanthin/ For more Therapeutic Uses (Complete) data for ASTAXANTHINE (7 total), please visit the HSDB record page. |
分子式 |
C40H52O4
|
---|---|
分子量 |
596.8385
|
精确质量 |
596.386
|
CAS号 |
472-61-7
|
PubChem CID |
5281224
|
外观&性状 |
Dark purple to black solid powder
|
密度 |
1.1±0.1 g/cm3
|
沸点 |
774.0±60.0 °C at 760 mmHg
|
熔点 |
215-216ºC
|
闪点 |
435.8±29.4 °C
|
蒸汽压 |
0.0±6.0 mmHg at 25°C
|
折射率 |
1.595
|
LogP |
8.16
|
tPSA |
74.6
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
4
|
可旋转键数目(RBC) |
10
|
重原子数目 |
44
|
分子复杂度/Complexity |
1340
|
定义原子立体中心数目 |
2
|
SMILES |
CC1=C(C(C[C@@H](C1=O)O)(C)C)/C=C/C(=C/C=C/C(=C/C=C/C=C(/C=C/C=C(/C=C/C2=C(C(=O)[C@H](CC2(C)C)O)C)\C)\C)/C)/C
|
InChi Key |
MQZIGYBFDRPAKN-UWFIBFSHSA-N
|
InChi Code |
InChI=1S/C40H52O4/c1-27(17-13-19-29(3)21-23-33-31(5)37(43)35(41)25-39(33,7)8)15-11-12-16-28(2)18-14-20-30(4)22-24-34-32(6)38(44)36(42)26-40(34,9)10/h11-24,35-36,41-42H,25-26H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,27-15+,28-16+,29-19+,30-20+/t35-,36-/m0/s1
|
化学名 |
(6S)-6-Hydroxy-3-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4S)-4-hydroxy-2,6,6-trimethyl-3-oxo-1-cyclohexenyl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-2,4,4-trimethyl-1-cyclohex-2-enone
|
别名 |
Astaxanthin
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: (1). 本产品在运输和储存过程中需避光。 (2). 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。 (3). 该产品在溶液状态不稳定,请现配现用。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ~2 mg/mL (~3.35 mM)
Acetone :< 1 mg/mL |
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: 3.33 mg/mL (5.58 mM) in 0.5% CMC-Na/saline water (这些助溶剂从左到右依次添加,逐一添加), 悬浮液; 超声和加热处理
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: 3.33 mg/mL (5.58 mM) in 20% HP-β-CD in Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浮液; 超声和加热处理 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.6755 mL | 8.3775 mL | 16.7549 mL | |
5 mM | 0.3351 mL | 1.6755 mL | 3.3510 mL | |
10 mM | 0.1675 mL | 0.8377 mL | 1.6755 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。