alpha-Tocopherol acetate

别名: D-alpha-Tocopheryl acetatealpha-Tocopherol acetate T-3376 Ephynal acetateEINECS 200-405-4 Contopheron Ephynal acetate D-alpha-生育酚醋酸酯;[2R-[2R*(4R*,8R*)]]-3,4-二氢-2,5,7,8-四甲基-2-(4,8,12-三甲基三癸基)-2H-1-苯并呋喃-6-酚乙酸酯;维生素E乙酸酯;乙酸维生素E;D-VE 维生素E-醋酸酯;8R*)]]-3,4-二氢-2,5,7,8-四甲基-2-(4,8,12-三甲基三癸基)-2H-1-苯并呋喃-6-酚乙酸酯;醋酸生育酚; D-α-生育酚乙酸酯;D-α-生育酚醋酸酯
目录号: V6207 纯度: ≥98%
D-α-生育酚醋酸酯(D-维生素E醋酸酯)可水解为d-α-生育酚(VE)并在小肠中吸收。
alpha-Tocopherol acetate CAS号: 58-95-7
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1g
Other Sizes

Other Forms of alpha-Tocopherol acetate:

  • 维生素E
  • 托可索仑
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
D-α-生育酚醋酸酯(D-维生素E醋酸酯)可水解为d-α-生育酚(VE)并在小肠中吸收。
生物活性&实验参考方法
靶点
Endogenous metabolite
体内研究 (In Vivo)
研究了卵磷脂分散制剂对大鼠小肠吸收d-α-生育酚醋酸酯(VEA)的影响。当含有VEA或聚山梨醇酯80(PS-80)溶解的VEA溶液的卵磷脂分散制剂经十二指肠内给药时,VEA水解为d-α-生育酚(VE),在血浆和胸淋巴中均未检测到。十二指肠内给药由VEA、大豆磷脂酰胆碱(PC)和中链甘油三酯(MCTG)组成的制剂(VEA/PC/MCTG,5/16/1重量)后,VE的最大血浆浓度(Cmax)在VEA制剂中最高,PS-80溶解溶液的Cmax最低。在VEA/PC制剂中加入MCTG也增加了VE至24小时的AUC。在胸导管瘘大鼠中,VEA/PC/MCTG制剂的给药增加了VE进入胸淋巴的运输,显著高于VEA/PC制剂;胸淋巴中VE在24小时内的累积回收量分别为剂量的23.2+/-0.5%和10.9+/-1.5%。即使在十二指肠内给药VEA制剂后,胸管瘘大鼠的血浆VE浓度也没有增加,这表明VE不是通过淋巴途径直接输送到系统循环的。十二指肠内给予VEA/PC/MCTG制剂后,同时给予乳糜微粒形成抑制剂Pluronic L-81乳液可显著减少VE的淋巴运输。提示乳糜微粒对VEA制剂中VE的淋巴转运至关重要。
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
_In addition to any following information, owing to d-alpha-Tocopherol acetate's closely related chemical nature with alpha-Tocopherol acetate, please also refer to the drug information page for alpha-Tocopherol acetate for further data._ 50 to 80% absorbed from gastrointestinal tract.
_In addition to any following information, owing to d-alpha-Tocopherol acetate's closely related chemical nature with alpha-Tocopherol acetate, please also refer to the drug information page for alpha-Tocopherol acetate for further data._
_In addition to any following information, owing to d-alpha-Tocopherol acetate's closely related chemical nature with alpha-Tocopherol acetate, please also refer to the drug information page for alpha-Tocopherol acetate for further data._
_In addition to any following information, owing to d-alpha-Tocopherol acetate's closely related chemical nature with alpha-Tocopherol acetate, please also refer to the drug information page for alpha-Tocopherol acetate for further data._
When vitamin E is ingested, intestinal absorption plays a principal role in limiting its bioavailability. It is known that vitamin E is a fat-soluble vitamin that follows the intestinal absorption, hepatic metabolism, and cellular uptake processes of other lipophilic molecules and lipids. The intestinal absorption of vitamin E consequently requires the presence of lipid-rich foods. In particular, stable alpha-tocopherol acetate undergoes hydrolysis by bile acid-dependant lipase in the pancreas or by an intestinal mucosal esterase. Subsequent absorption in the duodenum occurs by way of transfer from emulsion fat globules to water-soluble multi- and unilamellar vesicles and mixed micelles made up of phospholipids and bile acids. As the uptake of vitamin E into enterocytes is less efficient compared to other types of lipids, this could potentially explain the relatively low bioavailability of vitamin E. Alpha-tocopherol acetate itself is embedded in matrices where its hydrolysis and its uptake by intestinal cells are markedly less efficient than in mixed micelles. Subsequently, the intestinal cellular uptake of vitamin E from mixed micelles follows in principle two different pathways across enterocytes: (a) via passive diffusion, and (b) via receptor-mediated transport with various cellular transports like scavenger receptor class B type 1, Niemann-Pick C1-like protein, ATP-binding cassette (ABC) transporters ABCG5/ABCG8, or ABCA1, among others. Vitamin E absorption from the intestinal lumen is dependent upon biliary and pancreatic secretions, micelle formation, uptake into enterocytes, and chylomicron secretion. Defects at any step can lead to impaired absorption.. Chylomicron secretion is required for vitamin E absorption and is a particularly important factor for efficient absorption. All of the various vitamin E forms show similar apparent efficiencies of intestinal absorption and subsequent secretion in chylomicrons. During chylomicron catabolism, some vitamin E is distributed to all the circulating lipoproteins. Chylomicron remnants, containing newly absorbed vitamin E, are then taken up by the liver. Vitamin E is secreted from the liver in very low density lipoproteins (VLDLs). Plasma vitamin E concentrations depend upon the secretion of vitamin E from the liver, and only one form of vitamin E, alpha-tocopherol, is ever preferentially resecreted by the liver. The liver is consequently responsible for discriminating between tocopherols and the preferential plasma enrichment with alpha-tocopherol. In the liver, the alpha-tocopherol transfer protein (alpha-TTP) likely is in charge of the discriminatory function, where RRR- or d-alpha-tocopherol possesses the greatest affinity for alpha-TTP. It is nevertheless believed that only a small amount of administered vitamin E is actually absorbed. In two individuals with gastric carcinoma and lymphatic leukemia, the respective fractional absorption in the lymphatics was only 21 and 29 percent of label from meals containing alpha-tocopherol and alpha-tocopheryl acetate, respectively. Additionally, after feeding three separate single doses of 125 mg, 250 mg, and 500 mg to a group of healthy males, the observed plasma peak concentrations (ng/mL) were 1822 +/- 48.24, 1931.00 +/- 92.54, and 2188 +/- 147.61, respectively.
The major route of excretion of ingested vitamin E is fecal elimination because of its relatively low intestinal absorption. Excess alpha-tocopherol, as well as forms of vitamin E not preferentially used, are probably excreted unchanged in bile.
When three particular doses alpha-tocopherol were administered to healthy male subjects, the apparent volumes of distribution (ml) observed were: (a) at a single administered dose of 125 mg, the Vd/f was 0.070 +/- 0.002, (b) at dose 250. mg, the Vd/f was 0.127 +/- 0.004, and (c) at dose 500 mg, the Vd/f was 0.232 +/- 0.010.
When three specific doses of 125 mg, 250 mg, and 500 mg of alpha-tocopherol were administered as single doses to a group of healthy males, the resultant times of clearance observed, respectively, were: 0.017 +/- 0.015 l/h, 0.011 +/- 0.001 l/h, and 0.019 +/- 0.001 l/h.
Metabolism / Metabolites
_In addition to any following information, owing to d-alpha-Tocopherol acetate's closely related chemical nature with alpha-Tocopherol acetate, please also refer to the drug information page for alpha-Tocopherol acetate for further data._ Hepatic.
Primary hepatic metabolism of alpha-tocopherol begins in the endoplasmic reticulum with CYP4F2/CYP3A4 dependent ω-hydroxylation of the aliphatic side-chain, which forms the 13’-hydroxychromanol (13’-OH) metabolite. Next, peroxisome ω-oxidation results in 13’-carboxychromanol (13’-COOH). Following these two steps are five consecutive β-oxidation reactions which serve to shorten the alpha-tocopherol metabolite side-chains. The first of these β-oxidations occurs still in the peroxisome environment, generating carboxydimethyldecylhydroxychromanol (CDMDHC, 11’-COOH). Then, in the mitochondrion, the second β-oxidation step forms the carboxymethyloctylhydroxychromanol (CDMOHC, 9’-COOH) metabolite. Since both CDMDHC and CDMOHC possess a side-chain length of between 13 to 9 carbon units, they are considered long-chain metabolites. The hydrophobicity of these long-chain metabolites means they are not excreted in the urine but have been found in human microsomes, serum, and feces. The next two β-oxidation reactions, still within the mitochondrion environment, produce two intermediate chain metabolites: carboxymethylhexylhydroxychromanol (CDMHHC, 7’-COOH), followed by carboxymethylbutylhydroxychromanol (CMBHC, 5’-COOH). Both of these intermediate chain metabolites are found in human plasma, feces, and urine. Finally, the last mitochrondrion β-oxidation generates the catabolic end product of alpha-tocopherol metabolism: carboxyethyl-hydroxychromans (CEHC, 3'-COOH), which is considered a short-chain metabolite. CEHC has been observed in human plasma, serum, urine, and feces.
Biological Half-Life
_In addition to any following information, owing to d-alpha-Tocopherol acetate's closely related chemical nature with alpha-Tocopherol acetate, please also refer to the drug information page for alpha-Tocopherol acetate for further data._
The apparent half-life of RRR- or d-alpha-tocopherol in normal subjects is approximately 48 hours.
毒性/毒理 (Toxicokinetics/TK)
Protein Binding
_In addition to any following information, owing to d-alpha-Tocopherol acetate's closely related chemical nature with alpha-Tocopherol acetate, please also refer to the drug information page for alpha-Tocopherol acetate for further data._ Bound to beta-lipoproteins in blood.
Data regarding the protein binding of alpha-tocopherol is not readily accessible at the moment. In fact, the existence of alpha-tocopherol binding proteins in tissues other than the liver is involved in ongoing investigations.
参考文献

[1]. Enhancing effect of medium-chain triglycerides on intestinal absorption of d-alpha-tocopherol acetate from lecithin-dispersed preparations in the rat. J Pharmacobiodyn. 1989 Feb;12(2):80-6.

其他信息
Pharmacodynamics
_In addition to any following information, owing to d-alpha-Tocopherol acetate's closely related chemical nature with alpha-Tocopherol acetate, please also refer to the drug information page for alpha-Tocopherol acetate for further data._ Vitamin E has antioxidant activity. It may also have anti-atherogenic, antithrombotic, anticoagulant, neuroprotective, antiviral, immunomodulatory, cell membrane-stabilizing and antiproliferative actions. Vitamin E is a collective term used to describe eight separate forms, the best-known form being alpha-tocopherol. Vitamin E is a fat-soluble vitamin and is an important antioxidant. It acts to protect cells against the effects of free radicals, which are potentially damaging by-products of the body's metabolism. Vitamin E is often used in skin creams and lotions because it is believed to play a role in encouraging skin healing and reducing scarring after injuries such as burns. There are three specific situations when a vitamin E deficiency is likely to occur. It is seen in persons who cannot absorb dietary fat, has been found in premature, very low birth weight infants (birth weights less than 1500 grams, or 3½ pounds), and is seen in individuals with rare disorders of fat metabolism. A vitamin E deficiency is usually characterized by neurological problems due to poor nerve conduction. Symptoms may include infertility, neuromuscular impairment, menstrual problems, miscarriage and uterine degradation. Preliminary research has led to a widely held belief that vitamin E may help prevent or delay coronary heart disease. Antioxidants such as vitamin E help protect against the damaging effects of free radicals, which may contribute to the development of chronic diseases such as cancer. It also protects other fat-soluble vitamins (A and B group vitamins) from destruction by oxygen. Low levels of vitamin E have been linked to increased incidence of breast and colon cancer.
Of the eight separate variants of vitamin E, alpha-tocopherol is the predominant form of vitamin E in human and animal tissues, and it has the highest bioavailability. This is because the liver preferentially resecretes only alpha-tocopherol by way of the hepatic alpha-tocopherol transfer protein (alpha-TTP); the liver metabolizes and excretes all the other vitamin E variants, which is why blood and cellular concentrations of other forms of vitamin E other than alpha-tocopherol are ultimately lower. Furthermore, the term alpha-tocopherol generally refers to a group of eight possible stereoisomers which is often called all-rac-tocopherol for being a racemic mixture of all eight stereoisomers. Of the eight stereoisomers, the RRR-alpha-tocopherol - or sometimes referred to as the d-alpha-tocopherol - stereoisomer is the naturally occurring form of alpha-tocopherol that is perhaps best recognized by the alpha-TTP and has been reported to demonstrate approximately twice the systemic availability of all-rac-tocopherol. As a result, often times (but certainly not always) the discussion of vitamin E - at least within the context of using the vitamin for health-related indications - is generally in reference to the use of RRR- or d-alpha-tocopherol.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
精确质量
472.391
元素分析
C, 78.76; H, 11.09; O, 10.15
CAS号
58-95-7
相关CAS号
59-02-9 (vitamin E);58-95-7 (acetate);17407-37-3 (Hemisuccinate);9002-96-4 (PEG 1000 succinate);
PubChem CID
86472
外观&性状
Colorless to light yellow oil
密度
0.9±0.1 g/cm3
沸点
184 ºC
熔点
28 ºC
闪点
235.6±24.7 °C
蒸汽压
0.0±1.2 mmHg at 25°C
折射率
1.488
LogP
12.07
tPSA
35.53
氢键供体(HBD)数目
0
氢键受体(HBA)数目
3
可旋转键数目(RBC)
14
重原子数目
34
分子复杂度/Complexity
602
定义原子立体中心数目
3
SMILES
CC1=C(C(=C(C2=C1O[C@](CC2)(C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)C)OC(=O)C)C
InChi Key
ZAKOWWREFLAJOT-UHFFFAOYSA-N
InChi Code
InChI=1S/C31H52O3/c1-21(2)13-10-14-22(3)15-11-16-23(4)17-12-19-31(9)20-18-28-26(7)29(33-27(8)32)24(5)25(6)30(28)34-31/h21-23H,10-20H2,1-9H3
化学名
[2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-3,4-dihydrochromen-6-yl] acetate
别名
D-alpha-Tocopheryl acetatealpha-Tocopherol acetate T-3376 Ephynal acetateEINECS 200-405-4 Contopheron Ephynal acetate
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 本产品在运输和储存过程中需避光。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ≥ 250 mg/mL (~528.83 mM)
Ethanol : ~100 mg/mL (~211.53 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.75 mg/mL (5.82 mM) (饱和度未知) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 27.5 mg/mL的澄清EtOH储备液加入到400 μL PEG300中并混合均匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.75 mg/mL (5.82 mM) (饱和度未知) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 27.5 mg/mL 澄清乙醇储备液加入 900 μL 20% SBE-β-CD 生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.75 mg/mL (5.82 mM) (饱和度未知) in 10% EtOH + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 27.5 mg/mL 澄清 EtOH 储备液添加到 900 μL 玉米油中并充分混合。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01413620 WITHDRAWN Drug: dl-alpha-tocopheryl acetate Burn Injury Shriners Hospitals for Children 2011-08 Phase 1
NCT01749371 COMPLETED Drug: Vitamin E Burn The University of Texas Medical Branch, Galveston 2013-02 Phase 2
Phase 3
NCT00235716 COMPLETEDWITH RESULTS Drug: dl-alpha-tocopherol
Drug: Memantine
Drug: dl-alpha-tocopherol
Alzheimer's Disease US Department of Veterans Affairs 2007-08 Phase 3
NCT03948737 COMPLETED Drug: Alpha-Tocopherol
Drug: Placebo oral tablet
Beta Thalassemia Major Anemia
Hemolysis
Oxidative Stress
Indonesia University 2016-12-30 Not Applicable
NCT01113671 COMPLETED Drug: Vitamin E (d-alpha-tocopheryl acetate)
Drug: Placebo
Diabetes Mellitus Type 2 Technion, Israel Institute of Technology 2009-01 Phase 2
Phase 3
相关产品
联系我们