Abiraterone

别名: Abiraterone; CB 7598; CB7598; CB-7598; 17-(3-Pyridyl)androsta-5,16-dien-3beta-ol; (3beta)-17-(3-pyridinyl)-androsta-5,16-dien-3-ol; Abiraterone (CB-7598); US trade name: Zytiga. 阿比特龙; 17-(3-吡啶基)雄甾-5,16-二烯-3BETA-醇; 乙酸酯阿比特龙; 阿比特龙(17-(3-吡啶基)雄甾-5,16-二烯-3BETA-醇 ) ;阿比特伦;阿比特龙 杂质;17-(3-吡啶基)雄甾-5,16-二烯-3β-醇;阿比特龙氮氧化物;醋酸阿比特龙
目录号: V0800 纯度: ≥98%
阿比特龙(原名 CB 7598;CB7598;CB-7598;商品名 Zytiga)是一种新型、高效、不可逆、选择性 CYP17 抑制剂,具有潜在的抗肿瘤活性。
Abiraterone CAS号: 154229-19-3
产品类别: P450 (e.g. CYP)
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
5mg
10mg
100mg
250mg
500mg
1g
2g
5g
10g
Other Sizes

Other Forms of Abiraterone:

  • Abiraterone acetate-d4 (CB7630-d4)
  • Abiraterone acetate-d3
  • 乙酸阿比特龙酯
  • Abiraterone-d4 (CB-7598-d4)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
顾客使用InvivoChem 产品阿比特龙发表1篇科研文献
纯度/质量控制文件

纯度: ≥98%

纯度: ≥98%

产品描述
阿比特龙(以前也称为 CB 7598;CB7598;CB-7598;商品名 Zytiga)是一种新型、高效、不可逆、选择性 CYP17 抑制剂,具有潜在的抗肿瘤活性。在无细胞测定中,它抑制 CYP17,IC50 为 2 nM。阿比特龙是一种批准的药物,与皮质类固醇联合用于治疗转移性去势抵抗性前列腺癌和转移性高风险去势敏感型前列腺癌。
生物活性&实验参考方法
靶点
17α-hydroxylase (IC50 = 2.5 nM); 17,20-lyase (IC50 = 15 nM)
体外研究 (In Vitro)
已经确定,阿比特龙剂量≥5 μM 可显着限制 AR 阳性前列腺癌细胞系 LNCaP 和 VCaP 的增殖[2]。对于 17,20-裂解酶和 17α-羟化酶,阿比特龙的 IC50 值为 15 nM 和 2.5 nM(CYP17 是一种双功能酶,具有 17α-羟化酶和 17,20-裂解酶活性)。阿比特龙抑制人 17,20-裂解酶和 17α-羟化酶,IC50 值分别为 27 和 30 nM[3]。阿比特龙的竞争性 Ki 值为 2.1 和 8.8 μM,可抑制重组人 3βHSD1 和 3βHSD2 的活性。在这两种细胞系中,10 μM 阿比特龙足以完全阻止 DHT 和 5α-二酮的合成。在强劲生长的部分中,abi 治疗显着减缓了 CRPC 的进展,在整个 4 周的治疗过程中有效地限制了肿瘤的生长 (P<0.00001)。阿比特龙抑制 LNCaP 中 Δ4-雄烯二酮 (AD) 的积累和 [3H]-脱氢表雄酮 (DHEA) 的消耗,IC50<1 μM[4]。
体内研究 (In Vivo)
先前已证明 0.5 mmol/kg/d 阿比特龙治疗剂量可产生 0.5 至 1 μM 之间的血清浓度。在对照组中,异种移植肿瘤的生长变化很大;只有一小部分肿瘤生长旺盛,而其他肿瘤则生长缓慢[4]。静脉内(5 mg/kg)给药后的分布容积(Vd)和清除率(Cl)分别测定为1.97 L/kg和31.2 mL/min/kg。确定2675ng*h/mL是从时间零到无穷大时间点的血浆浓度-时间曲线下面积(AUC0-∞)。 0.73 小时是终末半衰期 (t1/2)。由于清除速度快,阿比特龙 (ART) 只能在静脉注射后两小时内进行定量[5]。
酶活实验
Enzyme assays/酶实验[4]
abiraterone作为抑制剂的孵育实验包含重组人3βHSD1或3βHSD2(在酵母微粒体中,每次孵育分别为3.2或25 μg蛋白),[3H]-孕烯醇酮(100,000 cpm, 1 - 20 μmol/L), abiraterone (5-20 μmol/L)或乙醇载体在0.2 ~ 1ml磷酸钾缓冲液中。37℃预孵育1 ~ 3分钟后,加入NAD+ (1 mmol/L), 37℃孵育15分钟。加入1 ~ 2ml乙酸乙酯:异辛烷(1:1)停止反应,提取类固醇到有机相。干燥后的提取物用薄层色谱(TLC)在塑料背衬硅胶板上用3:1氯仿:乙酸乙酯或高效液相色谱(HPLC)进行分离。对于薄层色谱,用碘蒸气鉴定含有类固醇的板的区域,用剪刀切除,并按所述用液体闪烁计数定量。HPLC法采用BioSafeII闪烁鸡尾酒法测定孕烯醇酮的放射性。以阿比特龙作为底物进行孵育,但以0.1 ~ 5 μmol/L未标记的阿比特龙代替孕烯醇酮,并采用HPLC定量转化。
配体结合试验[2]
将转染WT或T877A突变体AR或LNCaP细胞的PC-3细胞接种于24孔板中,在添加了css的无酚红培养基中培养24小时。为了确定[3H]-R1881与WT和T877A AR结合的动力学,将细胞用0.25-25nM [3H]-R1881处理2小时,然后洗涤、裂解并测量放射性。Kd和Bmax采用Graphpad Prism™软件非线性回归测定。当[3H]-R1881在WT和T877A AR突变体转染中达到几乎饱和AR所需的浓度(5nM)时,测定被试化合物对[3H]-R1881的置换。采用非线性回归法确定了[3H]-R1881置换50%时的浓度(EC50)
细胞实验
细胞生存能力[2]
LNCaP和VCaP细胞分别接种于96孔板中,在添加css的不含酚红或添加fbs的培养基中培养7 d。分别于24小时和96小时用化合物处理细胞,第7天通过添加CellTiter Glo和测量发光来测定细胞活力。
荧光素酶报告基因检测[2]
我们构建了一个PSA-ARE3-luc荧光素酶报告质粒,该质粒与人类AR表达质粒F527-AR(野生型(WT)或突变型)共转染;测序证实的突变)转化为PC-3细胞。将这些细胞播种在白色不透明的384孔板中,在添加10% css的不含酚红的RPMI 1640中生长30小时。然后用指定浓度的化合物和R1881处理细胞16小时。荧光素酶活性通过加入ONE Glo并在TopCount平板阅读器上测量发光来测定。转染效率和蛋白表达见补充图1。
动物实验
Mouse xenograft studies[4]
Male NOD/SCID mice 6 to 8 weeks of age were used, and studies were conducted under an Institutional Animal Care and Use Committee–approved protocol. Mice were surgically orchiectomized and implanted with a 5 mg 90-day sustained release DHEA pellet to mimic CRPC with human adrenal physiology. Two days later, 7 × 106 LAPC4 cells were injected subcutaneously with Matrigel. Tumor dimensions were measured 2 to 3 times per week, and volume was calculated as length × width × height × 0.52. Once tumors reached 300 mm3, mice were randomly assigned to vehicle or Abiraterone treatment groups. Mice in the Abiraterone group were treated with 5 mL/kg intraperitoneal injections of 0.5 mmol/kg/d (0.1 mL 5% benzyl alcohol and 95% safflower oil solution) and control mice with vehicle only, once daily for 5 days per week over a duration of 4 weeks (n = 8 mice per treatment). Statistical significance between Abiraterone and vehicle treatment groups was assessed by ANOVA based on a mixed-effect model.
Dissolved in 0.3% hydroxypropyl cellulose; 0.15 mmol/kg; s.c. injection
LAPC-4 xenograft mice
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Geometric mean (± SD) Cmax was 73 (± 44) ng/mL and AUC0-∞ was 373 (± 249) ng x hr/mL following a single dose of 500 mg abiraterone acetate in overnight-fasted healthy subjects. Dose proportionality was observed in single doses of abiraterone acetate ranging from 125 mg to 625 mg. A group of patients with mCRPC received a daily dose of 1,000 mg: at steady-state, the mean (± SD) Cmax was 226 (± 178) ng/mL and AUC was 993 (± 639) ng x hr/mL. Following oral administration of abiraterone acetate to patients with metastatic castration-resistant prostate cancer, the median Tmax was two hours. _In vivo_, abiraterone acetate is converted to abiraterone. In clinical studies of other abiraterone acetate formulations, abiraterone acetate plasma concentrations were below detectable levels (< 0.2 ng/mL) in > 99% of the analyzed samples. Systemic exposure to abiraterone is increased when abiraterone acetate is administered with food. Abiraterone Cmax was approximately 6.5-fold higher, and AUC0-∞ was 4.4-fold higher when a single dose of abiraterone acetate 500 mg was administered with a high-fat meal (56-60% fat, 900-1,000 calories) compared to overnight fasting in healthy subjects. Given the normal variation in the content and composition of meals, taking abiraterone with meals has the potential to result in increased and highly variable exposures.
Following oral administration of 14C-abiraterone acetate, approximately 88% of the radioactive dose is recovered in feces: the major compounds present in feces are unchanged abiraterone acetate and abiraterone, accounting for approximately 55% and 22% of the administered dose, respectively. Approximately 5% of the dose is recovered in urine.
The mean (± SD) apparent steady-state volume of distribution is 19,669 (± 13,358) L.
Metabolism / Metabolites
The conversion of abiraterone acetate to abiraterone, the active metabolite, is likely to be mediated by esterases, although specific esterases have not been identified. In human plasma, the two main circulating metabolites are abiraterone sulfate, which is formed by CYP3A4 and SULT2A1, and N-oxide abiraterone sulfate, which is formed by SULT2A1. These metabolites each account for about 43% of abiraterone exposure and are pharmacologically inactive.
Abiraterone has known human metabolites that include abiraterone sulfate.
Biological Half-Life
In patients with mCRPC, the mean (± SD) terminal half-life of abiraterone in plasma is 12 (± 5) hours.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
Serum aminotransferase elevations occur in up to 13% of patients treated with abiraterone compared with 1% to 8% receiving placebo or a comparator drug, but the abnormalities are generally mild, transient and not associated with symptoms or jaundice. ALT elevations above 5 times the upper limit of normal (ULN) occur in 6% of abiraterone treated vs
Likelihood score: C (probable rare cause of clinically apparent liver injury).
Protein Binding
Abiraterone is highly bound (>99%) to the human plasma proteins, albumin and alpha-1 acid glycoprotein.
参考文献

[1]. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol. 2008 Oct 1;26(28):4563-71.

[2]. Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: a rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Res. 2012 May 1;72(9):2176-82.

[3]. Androgen synthesis inhibitors in the treatment of castration-resistant prostate cancer. Asian J Androl. 2014 May-Jun;16(3):387-400.

[4]. Abiraterone inhibits 3β-hydroxysteroid dehydrogenase: a rationale for increasing drug exposure in castration-resistant prostate cancer. Clin Cancer Res. 2012 Jul 1;18(13):3571-9.

[5]. Validated RP-HPLC/UV method for the quantitation of abiraterone in rat plasma and its application to a pharmacokinetic study in rats. Biomed Chromatogr. 2013 Feb;27(2):203-7.

[6]. Androgen synthesis inhibitors in the treatment of castration-resistant prostate cancer. Asian J Androl. 2014 May-Jun;16(3):387-400.

其他信息
Pharmacodynamics
_In vivo_, abiraterone acetate is rapidly hydrolyzed to abiraterone, which mediates its pharmacological actions. Abiraterone decreases serum testosterone and other androgens. A change in serum prostate-specific antigen (PSA) levels may be observed.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C24H31NO
分子量
349.51
精确质量
349.24
元素分析
C, 82.47; H, 8.94; N, 4.01; O, 4.58
CAS号
154229-19-3
相关CAS号
Abiraterone acetate;154229-18-2;Abiraterone-d4;2122245-62-7
PubChem CID
132971
外观&性状
White to off-white solid powder
密度
1.14g/cm3
沸点
500.2±50.0 °C at 760 mmHg
熔点
227-228 °C
闪点
256.3±30.1 °C
蒸汽压
0.0±1.3 mmHg at 25°C
折射率
1.606
LogP
5.7
tPSA
33.12
氢键供体(HBD)数目
1
氢键受体(HBA)数目
2
可旋转键数目(RBC)
1
重原子数目
26
分子复杂度/Complexity
636
定义原子立体中心数目
6
SMILES
C[C@]12CC[C@@H](CC1=CC[C@@H]3[C@@H]2CC[C@]4([C@H]3CC=C4C5=CN=CC=C5)C)O
InChi Key
GZOSMCIZMLWJML-VJLLXTKPSA-N
InChi Code
InChI=1S/C24H31NO/c1-23-11-9-18(26)14-17(23)5-6-19-21-8-7-20(16-4-3-13-25-15-16)24(21,2)12-10-22(19)23/h3-5,7,13,15,18-19,21-22,26H,6,8-12,14H2,1-2H3/t18-,19-,21-,22-,23-,24+/m0/s1
化学名
(3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-(pyridin-3-yl)-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol.
别名
Abiraterone; CB 7598; CB7598; CB-7598; 17-(3-Pyridyl)androsta-5,16-dien-3beta-ol; (3beta)-17-(3-pyridinyl)-androsta-5,16-dien-3-ol; Abiraterone (CB-7598); US trade name: Zytiga.
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO:5 mg/mL
Water:<1 mg/mL
Ethanol:5.4 mg/mL
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.8611 mL 14.3057 mL 28.6115 mL
5 mM 0.5722 mL 2.8611 mL 5.7223 mL
10 mM 0.2861 mL 1.4306 mL 2.8611 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03348670 Active, not recruiting Drug: Abiraterone - Usual
Drug: Abiraterone - Study
Prostate Cancer Han Xu, M.D., Ph.D., FAPCR,
Sponsor-Investigator, IRB Chair
August 18, 2023 Phase 2
Phase 3
NCT05968599 Active, not recruiting Drug: Enzalutamide
Drug: Abiraterone acetate
Prostatic Neoplasms,
Castration-Resistant
Pfizer July 24, 2023
NCT05520138 Completed Drug: Enzalutamide
Drug: Abiraterone acetate
Prostatic Neoplasms,
Castration-Resistant
Pfizer August 29, 2022
NCT03565835 Active, not recruiting Drug: Abiraterone Acetate
Drug: Prednisone
Prostatic Neoplasms Montefiore Medical Center June 13, 2018 Phase 2
生物数据图片
  • Eplerenone activates T877A-AR and spironolactone activates both T877A-AR and wild-type (WT)-AR
  • Displacement of [3H] R1881 by eplerenone and abiraterone in PC-3 cells transfected with WT or T877A mutant AR
  • Plasma concentrations (nmol/L) of prednisolone in 15 CRPC patients treated with abiraterone acetate measured using liquid chromatography/tandem mass spectrometry (LC/MS/MS)
相关产品
联系我们