规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
靶点 |
CDK4 (IC50 = 2 nM); CDK6 (IC50 = 10 nM); Cdk4/cyclin D1 (IC50 = 2 nM); CDK6/cyclinD1 (IC50 = 10 nM); CDK9/cyclinT1 (IC50 = 57 nM); CDK5/p35 (IC50 = 287 nM); Cdk5/p25 (IC50 = 355 nM); CDK2/cyclinE (IC50 = 504 nM); CDK7/Mat1/cyclinH1 (IC50 = 3910 nM); CDK1/cyclinB1 (IC50 = 1627 nM); PIM1 (IC50 = 39 nM); PIM2 (IC50 = 3400 nM); HIPK2 (IC50 = 31 nM); DYRK2 (IC50 = 61 nM); CK2 (IC50 = 117 nM); GSK3b (IC50 = 192 nM); JNK3 (IC50 = 389 nM); FLT3 (D835Y) (IC50 = 403 nM); FLT3 (IC50 = 3960 nM); DRAK1 (IC50 = 659 nM)
|
---|---|
体外研究 (In Vitro) |
体外活性:Abemaciclib(以前称为 LY2835219)是一种有效、选择性、口服的 CDK4(细胞周期蛋白依赖性激酶)和 CDK6 双重抑制剂,在无细胞测定中 IC50 分别为 2 nM 和 10 nM。 LY2835219 特异性抑制 CDK4 和 6,从而抑制 G1 早期视网膜母细胞瘤 (Rb) 蛋白磷酸化。抑制 Rb 磷酸化可阻止 CDK 介导的 G1-S 相变,从而将细胞周期阻滞在 G1 期,抑制 DNA 合成并抑制癌细胞生长。丝氨酸/苏氨酸激酶 CDK4/6 的过度表达可导致细胞周期失调,如某些类型的癌症中所见。激酶测定:将细胞 (5 × 103) 铺在 96 孔板中。第二天将细胞处理 24 至 48 小时,然后根据制造商的说明和发光板读数器,通过 Caspase-Glo-3/7 测定法评估 caspase-3 活性。细胞测定:将细胞接种到 96 孔板中,使其粘附过夜,并用 DMSO 对照 (0.1% v/v) 或指定化合物处理 72 小时。根据制造商的说明,使用细胞计数试剂盒测定细胞活力和增殖。使用 CompuSyn 确定 LY2835219 和 mTOR 抑制剂之间的相互作用。组合指数 (CI) 值为 1 表示药物相互作用相加,而 CI < 1 表示协同作用,CI > 1 表示拮抗作用。
|
体内研究 (In Vivo) |
LY2835219 使 BBB 流出饱和,未结合血浆 IC50 约为 95 nM。 LY2835219-MsOH 在大脑中的剂量百分比为 0.5–3.9%。在皮下和颅内人胶质母细胞瘤模型 (U87MG) 中,LY2835219-MsOH 作为单一药物以及与替莫唑胺联合使用,均以剂量依赖性方式抑制肿瘤生长。
观察到Abemaciclib/阿贝马昔利单药可增强ID8小鼠卵巢癌模型的免疫浸润,尤其是CD8+ T细胞和B细胞的浸润。免疫表型分析表明,abemaciclib在肿瘤微环境中诱导了促炎免疫反应。PCR阵列分析显示,abemaciclib治疗的ID8肿瘤中存在th1极化的细胞因子谱。体外研究表明,abemaciclib处理的ID8细胞比对照组分泌更多的CXCL10和CXCL13,从而募集更多的淋巴细胞。联合治疗对肿瘤的控制优于单药治疗,CD8+和CD4+ T细胞活性较单药治疗进一步增强。abemaciclib联合抗pd -1治疗的协同抗肿瘤作用依赖于CD8+ T细胞和B细胞。结论:CDK4/6i与抗pd -1抗体联合治疗可提高抗pd -1治疗的疗效,对治疗免疫浸润不良的卵巢癌有很大的希望[3]。 |
酶活实验 |
LY2835219 (abemaciclib)是由礼来公司研究实验室的科学家通过化合物和生化筛选鉴定出来的,并因其生物活性和对CDK4/ cyclin D1复合物(IC50 =2 nmol/L)和CDK6/cyclin D1复合物(IC50 =10 nmol/L)的高度选择性抑制而被选中,在纳摩尔范围内对其他CDK/cyclin复合物或细胞周期相关激酶没有活性,除了CDK9的IC50至少高出5倍(图2)23该化合物被证明是CDK4和CDK6的atp结合域的竞争性抑制剂,对CDK4的抑制作用是对CDK6的14倍。与palbociclib和ribociclib相比,abemaciclib对复合物CDK4/cyclin D1具有更高的选择性,IC50值比其他两种化合物低5倍[1]。
|
细胞实验 |
采用聚对苯二甲酸乙二醇酯悬挂细胞培养片(5.0 μm)在24孔板上观察CD8+ T细胞和B细胞的体外迁移。底室分别取经abemaciclib或pbs处理的ID8细胞上清液600 μL作为化学引诱剂。利用阻断抗体进行transwell实验时,将30 μg/mL抗cxcl10或40 μg/mL抗cxcl13添加到含有abemaciclib处理的ID8细胞上清的下腔中。用大鼠IgG或山羊IgG作为同型对照抗体。上腔内注入100 μL新鲜分离的CD8+ T细胞或B细胞。在标准5% CO2培养箱中37°C孵育3小时后,用血细胞计计数迁移到下腔的细胞。[3]
|
动物实验 |
Female C57BL/6 mice
50 mg/kg i.p. In this study, researchers first assessed the antitumor efficacy of abemaciclib, an FDA-approved CDK4/6i, in a syngeneic murine ovarian cancer model. Then, immunohistochemistry, immunofluorescence and flow cytometry were performed to evaluate the number, proportion, and activity of tumor-infiltrating lymphocytes. Cytokine and chemokine production was detected both in vivo and in vitro by PCR array analysis and cytokine antibody arrays. The treatment efficacy of combined abemaciclib and anti-PD-1 therapy was evaluated in vivo, and CD8+ and CD4+ T cell activities were analyzed using flow cytometry. Lastly, the requirement for both CD8+ T cells and B cells in combination treatment was evaluated in vivo, and potential cellular mechanisms were further analyzed by flow cytometry. [3] Mouse cytokine and chemokine array[3] ID8 cells seeded at equal numbers were cultured in complete medium for 24 hours, washed twice with PBS and cultured in FBS-free DMEM plus 10 µmol/L abemaciclib or PBS for 24 hours. Then, the supernatants were collected and processed for mouse cytokine array analysis according to the manufacturer's protocols. Membranes were scanned using an LAS-500 imager. Relative cytokine levels were obtained by grayscale analysis using ImageJ.[3] |
药代性质 (ADME/PK) |
Absorption
The plasma concentration of the drug increases in a dose-proportional manner. Following a single oral dose administration of 200 mg abemaciclib, the mean peak plasma concentration (Cmax) of 158 ng/mL is reached after 6 hours. The median time to reach maximum plasma concentration (Tmax) ranges from 4-6 hours following an oral administration of abemaciclib over a range of 50–275 mg, but may range up to 24 hours. The absolute bioavailability of the drug is reported to be 45%. Route of Elimination Following a single oral dose of 150mg radiolabeled abemaciclib, approximately 81% of the total dose was recovered in feces while 3% of the dose was detected in urine. The majority of the drug is exceted as metabolites. Volume of Distribution The geometric mean systemic volume of distribution is approximately 690.3 L (49% CV). Clearance The geometric mean hepatic clearance (CL) of abemaciclib in patients was 26.0 L/h (51% CV). Metabolism / Metabolites Abemaciclib mainly undergoes hepatic metabolism mediated by CYP3A4. The major metabolite formed is N-desethylabemaciclib (M2), while other metabolites hydroxyabemaciclib (M20), hydroxy-N-desethylabemaciclib (M18), and an oxidative metabolite (M1) are also formed. M2, M18, and M20 are equipotent to abemaciclib and their AUCs accounted for 25%, 13%, and 26% of the total circulating analytes in plasma, respectively. Biological Half-Life The mean plasma elimination half-life for abemaciclib in patients was 18.3 hours (72% CV). |
毒性/毒理 (Toxicokinetics/TK) |
Hepatotoxicity
In the large clinical trials, adverse events were common and led to dose reductions in up to one-half of patients and discontinuation in 9%. In preregistration clinical trials, ALT elevations occurred in 31% to 41% of abemaciclib treated subjects which were above 5 times the ULN in 3% to 5%. In one study, several recipients developed clinically apparent liver injury with jaundice and one recipient died of hepatic failure, but these outcomes were considered to be unrelated to abemaciclib therapy. Thus, there were no cases of clinically apparent liver injury that could be attributed to abemaciclib therapy during prelicensure studies. Since the approval and more widescale use of abemaciclib, there have been no published reports of its hepatotoxicity. Nevertheless, the high rate of serum enzyme elevations during therapy and the similarity of abemaciclib to ribociclib and palbociclib makes it an agent that should be suspected of causing rare instances of clinically significant liver injury. Likelihood score: E* (unproved but suspected, rare cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation No information is available on the clinical use of abemaciclib during breastfeeding. Because abemaciclib and its metabolites are over 90% bound to plasma proteins, the amount in milk is likely to be low. However, the manufacturer recommends that breastfeeding be discontinued during abemaciclib therapy and for 3 weeks after the final dose. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding According to in vitro models using animal brain tissues, the protein binding of abemaciclib is approximately 95-98%. While abemaciclib demonstrated *in vitro* binding to serum albumin, alpha-1-acid glycoprotein and other human plasma proteins in a concentration-depedent manner, its major metabolites are also shown to bind to plasms proteins as well. The approximate bound fractions of M2, M18 and M20 are 93.4%, 96.8% and 97.8%, respectively. |
参考文献 | |
其他信息 |
Abemaciclib Mesylate is the mesylate salt of abemaciclib, an orally available cyclin-dependent kinase (CDK) inhibitor that targets the cyclin D1-CDK4 and cyclin D3-CDK6 cell cycle pathway, with potential antineoplastic activity. Abemaciclib specifically inhibits CDK4 and 6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation in early G1. Inhibition of Rb phosphorylation prevents CDK-mediated G1-S phase transition, thereby arresting the cell cycle in the G1 phase, suppressing DNA synthesis and inhibiting cancer cell growth. Overexpression of the serine/threonine kinases CDK4/6, as seen in certain types of cancer, causes cell cycle deregulation.
|
分子式 |
C28H36F2N8O3S
|
---|---|
分子量 |
602.7
|
精确质量 |
602.259
|
元素分析 |
C, 55.80; H, 6.02; F, 6.30; N, 18.59; O, 7.96; S, 5.32
|
CAS号 |
1231930-82-7
|
相关CAS号 |
Abemaciclib;1231929-97-7
|
PubChem CID |
71576678
|
外观&性状 |
White to yellow solid powder
|
LogP |
5.47
|
tPSA |
137.75
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
12
|
可旋转键数目(RBC) |
7
|
重原子数目 |
42
|
分子复杂度/Complexity |
815
|
定义原子立体中心数目 |
0
|
SMILES |
CC(N1C2=CC(C3=NC(NC4=NC=C(CN5CCN(CC)CC5)C=C4)=NC=C3F)=CC(F)=C2N=C1C)C.CS(=O)(O)=O
|
InChi Key |
NCJPFQPEVDHJAZ-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C27H32F2N8.CH4O3S/c1-5-35-8-10-36(11-9-35)16-19-6-7-24(30-14-19)33-27-31-15-22(29)25(34-27)20-12-21(28)26-23(13-20)37(17(2)3)18(4)32-26;1-5(2,3)4/h6-7,12-15,17H,5,8-11,16H2,1-4H3,(H,30,31,33,34);1H3,(H,2,3,4)
|
化学名 |
N-[5-[(4-ethylpiperazin-1-yl)methyl]pyridin-2-yl]-5-fluoro-4-(7-fluoro-2-methyl-3-propan-2-ylbenzimidazol-5-yl)pyrimidin-2-amine;methanesulfonic acid
|
别名 |
Abemaciclib; LY-2835219 mesylate; LY2835219; Abemaciclib methanesulfonate; N-(5-((4-ethylpiperazin-1-yl)methyl)pyridin-2-yl)-5-fluoro-4-(4-fluoro-1-isopropyl-2-methyl-1H-benzo[d]imidazol-6-yl)pyrimidin-2-amine methanesulfonate; LY2835219 Mesylate; LY-2835219 methanesulfonate; Abemaciclib (methanesulfonate); KKT462Q807; LY 2835219; Abemaciclib mesylate
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (4.15 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: 2.5 mg/mL (4.15 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (4.15 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 2 mg/mL (3.32 mM) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 5 中的溶解度: ≥ 2 mg/mL (3.32 mM) (饱和度未知) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 配方 6 中的溶解度: Water: 100 mg/mL (~165.9 mM) 配方 7 中的溶解度: 25 mg/mL (41.48 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶. 配方 8 中的溶解度: 12.5 mg/mL (20.74 mM) in 0.5% HEC (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶. 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.6592 mL | 8.2960 mL | 16.5920 mL | |
5 mM | 0.3318 mL | 1.6592 mL | 3.3184 mL | |
10 mM | 0.1659 mL | 0.8296 mL | 1.6592 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
Effects of LY2835219 on RB pathway and intracellular signaling.Oncotarget.2016 Mar 22;7(12):14803-13. th> |
---|
Combined effect of LY2835219 and mTOR inhibitorsin vitro.Oncotarget.2016 Mar 22;7(12):14803-13. td> |
LY2835219 and mTOR inhibitor combination in HNSCC xenograft tumor model.Oncotarget.2016 Mar 22;7(12):14803-13. td> |
Antitumor activity of LY2835219 in HNSCC xenograft tumor model.Oncotarget.2016 Mar 22;7(12):14803-13. th> |
---|
Effects of CDK4/6 inhibitor LY2835219 on cell growth in HNSCC.Oncotarget.2016 Mar 22;7(12):14803-13. td> |
Effects of LY2835219 on cell proliferation and cell cycle in HNSCC.Oncotarget.2016 Mar 22;7(12):14803-13. td> |