规格 | 价格 | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
靶点 |
Dopamine D1/D5 receptor
|
---|---|
体外研究 (In Vitro) |
SKF 38393 氢溴酸也会引起细胞形状的类似改变,它也会提高培养基中的 cAMP 水平 [2]。在培养的 GC 细胞中,给予 10 μM SKF-38393 盐酸盐一小时,可诱导 Mr 32 kD (DARPP-32) 磷蛋白的 DA 和 cAMP 调节的苏氨酸磷酸化增加 [2]。
|
体内研究 (In Vivo) |
SKF 38393 Hydrobromide (10 mg/kg; ip) 可阻断 1-甲基-4-苯基-1,2,3,6-四氢吡啶 (MPTP) 诱导的谷胱甘肽消耗 [3]。 SKF 38393 氢溴酸盐可减弱 MPTP 诱导的多巴胺消耗 [3]。 SKF 38393 氢溴酸可增强超氧化物歧化酶活性,从而模仿司来吉兰的作用 [3]。 SKF 38393 氢溴酸盐会增加抗河豚毒素的兴奋性突触后电流的频率,但不会增加其幅度,表明 D1 作用发生在突触前位点 [4]。
|
酶活实验 |
SKF 38393 saltloride 是 D1 的激动剂,IC50 为 110 nM。
使用定量放射自显影检查碘化SCH 23390、125I-SCH 23982(杜邦NEN)在大鼠脑切片中与多巴胺D1受体结合的效力、选择性以及解剖和神经元定位。125I-SCH 23982以非常高的亲和力(Kd值为55-125pM)、特异性(70-85%的结合被5微摩尔顺式氟戊噻醇取代)和可饱和的方式(Bmax值为65-176fmol/mg蛋白)结合基底节中的D1位点。选择性D1拮抗剂SCH 23390(IC50=90 pM)和顺式氟戊噻醇(IC50=200 pM)以及D1激动剂SKF 38393(IC50=110 nM)取代了特异性125I-SCH 23982结合,但D2选择性配体(I-舒必利,LY 171555)或S2拮抗剂西那塞林没有取代。与3H-SCH 23390相比,125I-SCH 23882对D1位点的亲和力提高了5到10倍,比放射性提高了50倍,使其成为标记D1受体的优秀放射性配体。D1位点的浓度在内侧黑质中最高,超过外侧黑质、尾壳核、伏隔核、嗅结节和内脚核中D1位点浓度的50%以上。较低浓度的D1位点存在于内囊、背内侧额叶皮层、屏状核和新皮层第6层。腹侧被盖区缺失D1位点。纹状体注射保留轴突的神经毒素喹啉酸,分别使同侧尾壳核和黑质内侧和中央网状部可移位D1位点的浓度减少87%和46-58%。黑质外侧未见D1位点丢失。用6-羟基多巴胺破坏高达94%的中脑多巴胺能投射并没有减少D1结合,也没有增加纹状体或黑质D1受体浓度,只有一个例外。125I-SCH 23982以皮摩尔亲和力选择性标记纹状体神经元上的D1结合位点,这些神经元包含大鼠大脑中的大部分D1位点[1]。
|
细胞实验 |
蛋白质印迹分析[2]
细胞类型: GC 细胞 测试浓度: 10 μM 孵育时间: 1小时 实验结果:在培养的 GC 细胞中诱导 DARPP-32 苏氨酸磷酸化增加。 |
动物实验 |
Animal/Disease Models: balb/c (Bagg ALBino) mouse (20-25 g) [3]
Doses: 5 mg/kg, 10 mg/kg Route of Administration: intraperitoneal (ip) injection Experimental Results: Blocks MPTP-induced glutathione depletion and attenuates MPTP Induced dopamine depletion. Balb/c mice were injected intraperitoneally with 5 or 10 mg/kg of SKF-38393 every 16 h with a final dose administered 30 min prior to administration of MPTP. Saline-injected but otherwise identically treated mice served as the control group. Animals were euthanized by decapitation in the morning in order to avoid diurnal variations of the endogenous levels of biogenic amines, enzymes, and antioxidant molecules. SN and NCP were micropunched and homogenized in 0.1 M phosphate buffer, pH 7.8, using a glass-teflon homogenizer. Tissue homogenates were centrifuged at 10 000×g for 60 min at 4°C. The supernatant obtained was assayed for GSH content and the activities of SOD and CAT.[3] |
参考文献 |
[1]. Altar CA, et al. Picomolar affinity of 125I-SCH 23982 for D1 receptors in brain demonstrated with digital subtraction auto radiography. J Neurosci. 1987 Jan;7(1):213-222.
[2]. Mayerhofer A, et al. Functional Dopamine-1 Receptors and DARPP-32 Are Expressed in Human Ovary and Granulosa Luteal Cells in Vitro. J Clin Endocrinol Metab. 1999 Jan;84(1):257-64. [3]. Muralikrishnan D, et al. SKF-38393, a dopamine receptor agonist, attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Brain Res. 2001 Feb 23;892(2):241-7. [4]. Bouron A, et al. The D1 dopamine receptor agonist SKF-38393 stimulates the release of glutamate in the hippocampus. Neuroscience. 1999;94(4):1063-70. |
其他信息 |
The catecholamines norepinephrine and dopamine (DA) are present in the human ovary; in particular, in follicular fluid. Norepinephrine activates ovarian alpha- and beta-adrenergic receptors and modulates ovarian steroidogenesis, but the significance of ovarian DA is unclear. We examined whether a DA receptor of the D1-subtype (D1-R) is present in human ovary and in cultured human granulosa luteal cells (GC). Using RT-PCR, we cloned complementary DNAs from adult human ovarian and GC messenger RNAs, which are identical to the human D1-R sequence. In ovarian sections, D1-R protein was identified (by immunohistochemistry) in granulosa cells of large antral follicles, cells of the corpus luteum, as well as in cultured GC. An immunoreactive band of approximately Mr 50,000 was found in cultured luteinized GC using the same antiserum in Western blots. The D1-R in these cells was functional, because DA, alone or in the presence of the beta-receptor antagonist propranolol, caused cellular contraction. The selective D1-R agonist SKF-38393 induced a similar change in cytomorphology and increased the levels of media cAMP. SKF-38393 failed, however, to significantly affect basal and hCG-stimulated progesterone release in vitro, indicating that the activation of the D1-R was not directly linked to synthesis of progesterone, the major steroid of human GC. Estradiol synthesis likewise was not affected. Using RT-PCR and immunohistochemistry, we found that GC express DA- and cAMP-regulated phosphoprotein of Mr 32,000 (DARPP-32), a protein typically associated with neurons bearing the D1-R. In cultured GC, DA and SKF-38393 induced increased threonine-phosphorylation of DARPP-32, even in the presence of propranolol but not in the presence of D1-R antagonist SCH-23390. Taken together, the presence of DA and a functional DA receptor and DARPP-32 indicate that a novel, physiological regulatory pathway involving DA exists in the human ovary.[2]
The present study was undertaken to better assess the role of dopamine on exocytosis. Since direct activation of adenylate cyclase (e.g., with forskolin) enhances neurotransmitter release it was of interest to see whether the activation of D1-type dopamine receptors, which are positively coupled to adenylate cyclase, could also modulate the molecular machinery underlying the fusion of synaptic vesicles and the release of neurotransmitter. To answer this question we have looked at the effect of the D1-type dopamine receptor agonist SKF-38393 on the spontaneous release of glutamate from cultured rat hippocampal neurons. SKF-38393 enhanced the frequency but not the amplitude of tetrodotoxin-resistant excitatory postsynaptic currents which argues for a presynaptic locus of D1 action. This effect was blocked by the D1-dopaminergic receptor antagonist SCH-23390 and the protein kinase A inhibitors H-7 and Rp-cAMP whereas pertussis toxin failed to affect the dopaminergic response. In addition, carbachol and Ruthenium Red also stimulated exocytosis but did not occlude the SKF-38393-induced modulation. These results indicate that SKF-38393 presynaptically enhances the release of glutamate via a pertussis toxin-insensitive and protein kinase A-dependent mechanism, which most likely involves D1-type dopamine receptors. Our results underline the importance of protein kinase A as potent modulator of synaptic transmission and suggest that high concentrations of dopamine can greatly enhance the release of glutamate in the hippocampus.[4] |
分子式 |
C16H18BRNO2
|
---|---|
分子量 |
336.229
|
精确质量 |
335.052
|
元素分析 |
C, 57.16; H, 5.40; Br, 23.76; N, 4.17; O, 9.52
|
CAS号 |
20012-10-6
|
相关CAS号 |
SKF 38393 hydrochloride;62717-42-4;
67287-49-4, 81702-42-3 (R-isomer HCl), 62751-59-1 (R-isomer), 20012-10-6 (HBr)
|
PubChem CID |
12928470
|
外观&性状 |
Solid powder
|
LogP |
3.662
|
tPSA |
52.49
|
氢键供体(HBD)数目 |
4
|
氢键受体(HBA)数目 |
3
|
可旋转键数目(RBC) |
1
|
重原子数目 |
20
|
分子复杂度/Complexity |
291
|
定义原子立体中心数目 |
0
|
SMILES |
C1=CC=C(C=C1)C2CNCCC3=CC(=C(C=C32)O)O.Br
|
InChi Key |
INNWVRBZMBCEJI-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C16H17NO2.BrH/c18-15-8-12-6-7-17-10-14(13(12)9-16(15)19)11-4-2-1-3-5-11;/h1-5,8-9,14,17-19H,6-7,10H2;1H
|
化学名 |
1-phenyl-2,3,4,5-tetrahydro-1H-benzo[d]azepine-7,8-diol hydrobromide
|
别名 |
SKF 38393 hydrobromide; 20012-10-6; SKF 38393 hydrobromide - Bio-X; SKF 38393 (hydrobromide); SKF-38393 HBr; CHEMBL505308; 5-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol;hydrobromide; 1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diolhydrobromide;
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.9742 mL | 14.8708 mL | 29.7415 mL | |
5 mM | 0.5948 mL | 2.9742 mL | 5.9483 mL | |
10 mM | 0.2974 mL | 1.4871 mL | 2.9742 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。