规格 | 价格 | 库存 | 数量 |
---|---|---|---|
100mg |
|
||
250mg |
|
||
Other Sizes |
|
靶点 |
EGFR
|
---|---|
体外研究 (In Vitro) |
E/Z-Afatinib是一种强效、不可逆的EGFR激酶Her2/ErbB 2抑制剂。
靶向EGFR、HER-2和HER-4的小分子酪氨酸激酶抑制剂(TKI)阿法替尼(Afatinib)在体外逆转了ABCG2介导的化疗耐药,但对多药耐药蛋白ABCB1和ABCC1介导的化疗耐药无影响。[2]
|
体内研究 (In Vivo) |
非小细胞肺癌(NSCLC)患者表皮生长因子受体(EGFR)激酶结构域的遗传改变与对小分子酪氨酸激酶抑制剂治疗的敏感性有关。尽管第一代可逆的atp竞争抑制剂在含有EGFR突变的肺腺癌肿瘤中显示出令人鼓舞的临床反应,但随着时间的推移,几乎所有患者都对这些抑制剂产生了耐药性。这种对第一代EGFR抑制剂的耐药性通常与EGFR激酶结构域获得性T790M点突变或HER3下游信号通路上调有关。克服这些耐药机制,以及对由EGFR突变亚群驱动的可逆性EGFR抑制剂的原发性耐药,将是开发有效靶向治疗方案的必要条件。在这里,我们发现BIBW2992是一种苯胺-喹唑啉,旨在不可逆地结合EGFR和HER2,有效地抑制野生型和活化的EGFR和HER2突变体的激酶活性,包括厄洛替尼耐药亚型。与此活性一致,BIBW2992在基于等基因细胞的实验中抑制转化,抑制癌细胞系的存活,并在异种移植和转基因肺癌模型中诱导肿瘤消退,其活性优于厄洛替尼。这些发现鼓励在携带EGFR或HER2癌基因的肺癌患者中进一步检测BIBW2992。[3]
此外,阿法替尼联合拓扑替康在体内显著抑制ABCG2-过表达的细胞异种移植物肿瘤的生长。[2] |
酶活实验 |
EGFR 激酶:10 μL 抑制剂的 50% Me2SO 溶液、20 μL 底物溶液(200 mM HEPES pH 7.4、50 mM 醋酸镁、2.5 mg/mL 聚 (EY)、5 μg/mL 生物 pEY)和 20每个 100 µL 酶反应中均包含 µL 酶制剂。添加 50 µL 在 10 mM MgCl2 中制备的 100 µM ATP 溶液即可启动酶反应。室温下测定 30 分钟后,添加 50 µL 终止液(20 mM HEPES pH 7.4 中的 250 mM EDTA)以结束测定。将 100 µL 添加到涂有链霉亲和素的微量滴定板上,室温孵育 60 分钟后,用 200 µL 洗涤液(50 mM Tris,0.05% Tween20)清洗板。孔中装有 100 µL 等份的 PY20H Anti-Ptyr:HRP(一种 250 ng/mL HRPO 标记的抗 PY 抗体)。 60 分钟孵育期后,使用 200 µL 清洗溶液清洗板 3 次。随后,使用 100 µL TMB 过氧化物酶溶液 (A:B=1:1) 来显色样品。十分钟后,反应停止。将板放入 ELISA 读数器后,计算 OD450nm 处的消光。酶 HER2-IC:酶活性测定在有或没有系列抑制剂稀释的 50% Me2SO 中进行。每个 100 µL 反应中均包含与 EGFR 激酶测定所述类似的成分,并添加了 1000 µM Na3VO4。添加 50 µL 在 10 mM 醋酸镁中制备的 500 µM ATP 溶液即可启动酶促反应。将酶稀释至酶量与磷酸盐掺入 bio-pEY 所需时间呈线性关系的程度。使用 20 mM HEPES pH 7.4、130 mM NaCl、0.05% Triton X-100、1 mM DTT 和 10% 甘油的混合物来稀释酶制剂。室温下测定 30 分钟后,添加 50 µL 终止液以结束程序。 Src 激酶测定:每个 100 µL 反应中包含 10 µL 50% Me2SO 抑制剂、20 µL 酶制剂和 20 µL 用 1000 µM Na3VO4 增强的底物溶液。添加 50 µL 在 10 mM 乙酸镁中制备的 1000 µM ATP 溶液可启动酶促反应。 BIRK 激酶测定:将 50 µL 在 8 mM MnCl2 和 20 mM 乙酸镁中制备的 2 mM ATP 溶液添加到 250 mM Tris pH 7.4、10 mM DTT、2.5 mg/mL 聚 (EY) 和 5 mg/ mL bio-pEY 作为底物溶液来启动酶促反应。 HGFR 激酶和 VEGF2 检测:在室温下运行 20 分钟后,添加 10 µL 5% H3PO4 即可完成检测。然后使用 96 孔过滤器伴侣通用收集器收集沉淀物并捕获到 GF/B 过滤器上。将滤板彻底清洁,在 50°C 下干燥一小时,密封,并使用 TopCountTM 或 Microbeta b counterTM 使用闪烁计数来测量放射性>。
|
细胞实验 |
食管鳞状细胞癌(ESCC)是全球第八大常见癌症。表皮生长因子受体(EGFR)在食管癌中经常过度表达,因此抗EGFR抑制剂已在ESCC中进行了评估。阿法替尼是这些ErbB家族受体的不可逆抑制剂。本研究表征了阿法替尼在5种ESCC细胞系(HKESC-1、HKESC-2、KYSE510、SLMT-1和EC-1)中的临床前活性。在IC50浓度较低的微摩尔浓度范围(HKESC-1 = 0.002 μM, HKESC-2 = 0.002 μM, KYSE510 = 1.090 μM, SLMT-1 = 1.161 μM, EC-1 = 0.109 μM)下,ESCC细胞株对阿法替尼敏感,最大生长抑制率达95%以上。阿法替尼能强烈诱导HKESC-2和EC-1的G0/G1细胞周期阻滞,且呈剂量和时间依赖性。在HKESC-2和EC-1中,ErbB家族下游效应因子pAKT、pS6和pMAPK的磷酸化被显著抑制。暴露于阿法替尼24小时后,两种细胞系均观察到凋亡,这是通过裂解PARP的存在来确定的。阿法替尼能有效抑制小鼠HKESC-2肿瘤生长,无明显毒性。在体外和体内模型中,阿法替尼单用对ESCC均表现出良好的生长抑制作用,但与5-氟尿嘧啶(5-FU)、顺铂等化疗药物联用时未见增效作用。综上所述,阿法替尼能有效抑制ESCC细胞增殖,阻滞细胞于G0/G1期,诱导细胞凋亡。这些发现为进一步研究阿法替尼作为治疗ESCC的药物提供了依据。[4]
|
动物实验 |
H460/MX20 cells (3 × 106) were subcutaneously injected into the right flank of athymic nude mice (BALB/c-nu/nu, both sexes, 5 to 6 weeks old). When xenograft size reached 5 mm in diameter, mice were randomized into four groups (12 in each group), and then received various treatments: (a) saline (every 3 d × 6, intraperitoneally [IP]); (b) topotecan (every 3 d × 6, IP, 3 mg/kg); (c) Afatinib (BIBW2992) (every 3 d × 6, orally [PO], 20 mg/kg); (d) topotecan (every 3 d × 6, IP, 3 mg/kg) plus afatinib (every 3 d × 6, PO, 20 mg/kg) (afatinib was given 1 h before topotecan administration). Tumor size was measured with linear calipers every 3 days. Tumor volumes (V) were calculated using the formula: (length×width2/2). The mice were euthanized on day 30 and the xenografts were excised and weighed. [2]
Four bitransgenic mice on continuous doxycycline diets for more than 6 weeks were subjected to MRI (Figure 4) to document the lung tumor burden. Afatinib (BIBW2992) formulated in 0.5% methocellulose-0.4% polysorbate-80 (Tween 80) was administered orally by gavage at 20 mg/kg once daily dosing schedule. Rapamycin was dissolved in 100% ethanol, freshly diluted in 5% PEG400 and 5% Tween 80 before treatment and administered by intraperitoneal injection at 2 mg/kg daily dosage. Mice were monitored by MRI every 1 or 2 weeks to determine reduction in tumor volume and killed for further histological and biochemical studies after drug treatment. For immunohistochemistry staining, three tumor-bearing mice in each group were treated three times with either Afatinib (BIBW2992) (20 mg/kg) alone or Afatinib (BIBW2992) (20 mg/kg) and rapamycin 2 mg/kg at 24 h intervals and killed 1 h after the last drug delivery. All the mice were kept on the doxycycline diet throughout the experiments. Littermates were used as controls.[3] |
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
Following oral administration, time to peak plasma concentration (Tmax) is 2 to 5 hours. Maximum concentration (Cmax) and area under the concentration-time curve from time zero to infinity (AUC0-∞) values increased slightly more than dose proportional in the range of 20 to 50 mg. The geometric mean relative bioavailability of 20 mg tablets was 92% as compared to an oral solution. Additionally, systemic exposure to afatinib is decreased by 50% (Cmax) and 39% (AUC0-∞), when administered with a high-fat meal compared to administration in the fasted state. Based on population pharmacokinetic data derived from clinical trials in various tumor types, an average decrease of 26% in AUCss was observed when food was consumed within 3 hours before or 1 hour after taking afatinib. In humans, excretion of afatinib is primarily via the feces. Following administration of an oral solution of 15 mg afatinib, 85.4% of the dose was recovered in the feces and 4.3% in urine. The parent compound afatinib accounted for 88% of the recovered dose. The volume of distribution of afatinib recorded in healthy male volunteers is documented as 4500 L. Such a high volume of distribution in plasma suggests a potentially high tissue distribution. The apparent total body clearance of afatinib as recorded in healthy male volunteers is documented as being a high geometric mean of 1530 mL/min. Metabolism / Metabolites Enzyme-catalyzed metabolic reactions play a negligible role for afatinib in vivo. Covalent adducts to proteins were the major circulating metabolites of afatinib. Biological Half-Life Afatinib is eliminated with an effective half-life of approximately 37 hours. Thus, steady-state plasma concentrations of afatinib were achieved within 8 days of multiple dosing of afatinib resulting in an accumulation of 2.77-fold (AUC0-∞) and 2.11-fold (Cmax). In patients treated with afatinib for more than 6 months, a terminal half-life of 344 h was estimated. |
毒性/毒理 (Toxicokinetics/TK) |
Hepatotoxicity
Elevations in serum aminotransferase levels are common during afatinib therapy occurring in 20% to 50% of patients, but rising above 5 times the upper limit of the normal range in only 1% to 2%. Hepatic failure is said to have occurred in 0.2% of patients and to have resulted in several fatalities. Hepatotoxicity appears to be a class effect among protein kinase inhibitors of EGFR2, although liver injury appears to be more frequent and more severe with gefitinib than with afatinib and erlotinib. Specific details of the liver injury associated with afatinib such as latency, serum enzyme pattern, clinical features and course, have not been published. Other EGFR inhibitors, such as erlotinib and gefitinib typically cause liver injury arising within days or weeks of starting therapy and presenting abruptly with hepatocellular enzyme elevations and a moderate-to-severe course. Immunoallergic and autoimmune features are not common. The rate of clinically significant liver injury and hepatic failure is increased in patients with preexisting cirrhosis or hepatic impairment due to liver tumor burden. Likelihood score: D (possible cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation No information is available on the clinical use of afatinib during breastfeeding. Because afatinib is about 95% bound to plasma proteins, the amount in milk is likely to be low. However, its half-life is about 37 hours and it might accumulate in the infant. the manufacturer recommends that breastfeeding be discontinued during afatinib therapy and for 2 weeks after the last dose. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding In vitro binding of afatinib to human plasma proteins is approximately 95%. Afatinib binds to proteins both non-covalently (traditional protein binding) and covalently. |
参考文献 |
|
其他信息 |
Pharmacodynamics
Aberrant ErbB signaling triggered by receptor mutations, and/or amplification, and/or receptor ligand overexpression contributes to the malignant phenotype. Mutation in EGFR defines a distinct molecular subtype of lung cancer. In non-clinical disease models with ErbB pathway deregulation, afatinib as a single agent effectively blocks ErbB receptor signaling resulting in tumor growth inhibition or tumor regression. NSCLC tumors with common activating EGFR mutations (Del 19, L858R) and several less common EGFR mutations in exon 18 (G719X) and exon 21 (L861Q) are particularly sensitive to afatinib treatment in non-clinical and clinical settings. Limited non-clinical and/or clinical activity was observed in NSCLC tumors with insertion mutations in exon 20. The acquisition of a secondary T790M mutation is a major mechanism of acquired resistance to afatinib and gene dosage of the T790M-containing allele correlates with the degree of resistance in vitro. The T790M mutation is found in approximately 50% of patients' tumors upon disease progression on afatinib, for which T790M targeted EGFR TKIs may be considered as a next line treatment option. Other potential mechanisms of resistance to afatinib have been suggested preclinically and MET gene amplification has been observed clinically. At the same time, the effect of multiple doses of afatinib (50 mg once daily) on cardiac electrophysiology and the QTc interval was evaluated in an open-label, single-arm study in patients with relapsed or refractory solid tumors. Ultimately, no large changes in the mean QTc interval (i.e., >20 ms) were detected in the study. |
分子式 |
C24H25CLFN5O3
|
---|---|
分子量 |
485.94
|
精确质量 |
485.162
|
CAS号 |
439081-18-2
|
相关CAS号 |
Afatinib oxalate;1398312-64-5
|
PubChem CID |
10184653
|
外观&性状 |
White to off-white solid powder
|
密度 |
1.4±0.1 g/cm3
|
沸点 |
676.9±55.0 °C at 760 mmHg
|
熔点 |
100 - 102 °C
|
闪点 |
363.2±31.5 °C
|
蒸汽压 |
0.0±2.1 mmHg at 25°C
|
折射率 |
1.668
|
LogP |
3.59
|
tPSA |
88.61
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
8
|
可旋转键数目(RBC) |
8
|
重原子数目 |
34
|
分子复杂度/Complexity |
702
|
定义原子立体中心数目 |
1
|
SMILES |
CN(C)C/C=C/C(=O)NC1=C(C=C2C(=C1)C(=NC=N2)NC3=CC(=C(C=C3)F)Cl)O[C@H]4CCOC4
|
InChi Key |
ULXXDDBFHOBEHA-CWDCEQMOSA-N
|
InChi Code |
InChI=1S/C24H25ClFN5O3/c1-31(2)8-3-4-23(32)30-21-11-17-20(12-22(21)34-16-7-9-33-13-16)27-14-28-24(17)29-15-5-6-19(26)18(25)10-15/h3-6,10-12,14,16H,7-9,13H2,1-2H3,(H,30,32)(H,27,28,29)/b4-3+/t16-/m0/s1
|
化学名 |
(E)-N-[4-(3-chloro-4-fluoroanilino)-7-[(3S)-oxolan-3-yl]oxyquinazolin-6-yl]-4-(dimethylamino)but-2-enamide
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 本产品在运输和储存过程中需避光。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0579 mL | 10.2893 mL | 20.5787 mL | |
5 mM | 0.4116 mL | 2.0579 mL | 4.1157 mL | |
10 mM | 0.2058 mL | 1.0289 mL | 2.0579 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。