Pemafibrate [(R)-K-13675]

别名: K877; (R)-K13675; K-877; (R)-K 13675; K 877; 848259-27-8; Pemafibrate [INN]; (R)-K-13675; K-13675, (R)-; (R)-2-(3-((benzo[d]oxazol-2-yl(3-(4-methoxyphenoxy)propyl)amino)methyl)phenoxy)butanoic acid; CHEMBL247951; CAS#848259-27-8; (R) K-13675; Pemafibrate sodium; (R)-K 13675; Parmodia
目录号: V17606 纯度: =99.87%
培马贝特 [(R)-K 13675; K877; Parmodia] 是一种用于降低甘油三酯的药物,是过氧化物酶体增殖物激活受体 α (PPAR α/PPARα) 的有效激动剂,EC50 为 1 nM。
Pemafibrate [(R)-K-13675] CAS号: 848259-27-8
产品类别: PPAR
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Pemafibrate [(R)-K-13675]:

  • 培马贝特钠盐
  • 培马贝特外消旋体
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: =99.87%

纯度: ≥98%

纯度: ≥98%

产品描述
Pemafibrate [(R)-K 13675; K877; Parmodia] 是一种用于降低甘油三酯的药物,是过氧化物酶体增殖物激活受体 α (PPAR α/PPARα) 的有效激动剂,EC50 为 1 nM。 Pemafibrate 是一种药物,旨在选择性且有效地激活细胞核中称为 PPARα 的受体。 PPARα受体的激活会导致细胞核中许多不同基因的活性发生变化,进而导致体内产生一系列代谢效应。主要变化是血液甘油三酯浓度降低,即使是服用他汀类药物的患者也是如此。 Pemafibrate 在日本获准使用,名为 PARMODIA®,用于降低甘油三酯,但尚未批准在欧洲使用,目前正在进行临床试验,以评估其减少高危人群严重心血管事件的能力。 (R)-K-13675 减少炎症标志物的分泌,而不影响细胞增殖或管形成。过氧化物酶体增殖物激活受体-α (PPAR-α) 是脂质和葡萄糖代谢的关键调节因子,与炎症有关。 (R)-K-13675 与抑制炎症反应相关,而不影响细胞增殖或血管生成,随后可能诱导抗动脉粥样硬化作用。
生物活性&实验参考方法
靶点

h-PPARα:1 nM (EC50); h-PPARγ:1.1 μM (EC50); PPARδ:1.58 μM (EC50)

体外研究 (In Vitro)
Pemafibrate 是一种有效的 PPARα 激动剂,对 h-PPARα、h-PPARγ 和 h-PPARδ 的 EC50 值分别为 1 nM、1.10 μM 和 1.58 μM。 Pemafibrate 对 PPARα 的选择性是 PPARγ 和 PPARδ 的 1000 倍以上[1]。
Pemafibrate 通过增加PPARα表达抑制线粒体功能障碍。Pemafibrate 抑制线粒体诱导的细胞凋亡。pemafbrate通过NF-κB信号通路阻止线粒体功能障碍。https://pmc.ncbi.nlm.nih.gov/articles/PMC7903427/
体内研究 (In Vivo)
Pemafibrate(3 mg/kg,口服)可增加人 apoA-I (h-apoA-I) 转基因小鼠的血浆 h-apoA-I,且血浆 h-apoA-I 水平高于 300 mg/kg 的非诺贝特[ 1]。 Pemafibrate (0.03 mg/kg) 降低 PEMA-L (db/db) 小鼠的甘油三酯和天冬氨酸转氨酶 (AST) 水平。 Pemafibrate (0.1 mg/kg) 不仅显示出这种作用,而且还增加了 PEMA-H (db/db) 小鼠的肝脏重量。 Pemafibrate 增强非酒精性脂肪性肝炎 (NASH) 啮齿动物模型的发病机制。 Pemafibrate 显着降低 PEMA-H 小鼠肝细胞气球样变的程度。此外,Pemafibrate 调节脂质周转并诱导肝脏中解偶联蛋白 3 (UCP 3) 的表达[2]。高脂饮食 (HFD) 中含有的 Pemafibrate (K-877, 0.0005%) 可抑制小鼠体重增加。 Pemafibrate 显着降低小鼠餐后血浆中富含甘油三酯 (TG) 的脂蛋白(包括残余物)的丰度。 Pemafibrate 还可降低 ApoB 和 Npc1l1 的肠道 mRNA 表达[3]。
细胞实验
将胚胎大鼠心肌细胞衍生细胞系H9c2培养于37℃加5% CO2的加湿培养箱中,高糖DMEM中添加10%牛血清、100 U/ml青霉素和100µg/ml链霉素。细胞(1x106细胞/孔)接种于6孔板中。实验前,将细胞在添加1% fbs的低糖DMEM中饥饿24 h,并分为以下组:i)低糖组(对照组;终浓度5.5 mmol/l);ii)高葡萄糖(HG);终浓度33 mmol/l);iii) HG +缺氧/再氧合(HG + H/R);HG + H/R + 50 nmol/l Pemafibrate。简单地说,当细胞达到60%的合度时,用对照或HG培养基预处理48 h。随后,用1%的FBS-DMEM在缺氧条件下(95% N2和5% CO2)培养6 h,然后在正常培养条件下再氧化4 h,诱导h /R模型。Pemafibrate溶于DMSO (203.85 mmol/l)中,然后加入培养基。https://pmc.ncbi.nlm.nih.gov/articles/PMC7903427/
动物实验
Mice are fasted for 12 h and fasting blood glucose measured. Nine-week-old db/db mice are used in the assay. After a 2-week acclimatization period, mice are divided into four groups: BD (db/db) mice (fed basal diet (BD) and treated with 0.5% aqueous methylcellulose solution (MC); MCD (db/db) mice (fed methionine choline-deficient (MCD) and treated with 0.5% MC); PEMA-L (db/db) mice (fed MCD and treated with 0.03 mg/kg Pemafibrate); PEMA-H (db/db) mice (fed MCD and treated with 0.1 mg/kg Pemafibrate). The drug-free solvent or the dosing solution is administered to animals (5 mL/kg body weight, p.o.) once daily (in the morning) for 4 consecutive weeks. After a 2-week acclimatization period, BD mice are fed a BD for 20 weeks. CTRL mice are fed D09100301 for 20 weeks. PEMA-L and PEMA-H mice are fed D09100301 for 12 weeks followed by D09100301 with 0.4 mg and 1.3 mg Pemafibrate/kg of the diet for 8 weeks, which corresponds to 0.03 mg/kg/day and 0.1 mg/kg/day, respectively. FENO mice are fed D09100301 for 12 weeks followed by D09100301 with 666.7 mg fenofibrate/kg of the diet for 8 weeks, which corresponds to 50 mg/kg/day. Pemafibrate and fenofibrate are incorporated into the AMLN diet. Animals are housed under conventional conditions with controlled temperature, humidity, and light (12-h light-dark cycle) and provided with food and water[2].

Mice are fasted for 12 h and fasting blood glucose measured. Nine-week-old db/db mice are used in the assay. After a 2-week acclimatization period, mice are divided into four groups: BD (db/db) mice (fed basal diet (BD) and treated with 0.5% aqueous methylcellulose solution (MC); MCD (db/db) mice (fed methionine choline-deficient (MCD) and treated with 0.5% MC); PEMA-L (db/db) mice (fed MCD and treated with 0.03 mg/kg Pemafibrate); PEMA-H (db/db) mice (fed MCD and treated with 0.1 mg/kg Pemafibrate). The drug-free solvent or the dosing solution is administered to animals (5 mL/kg body weight, p.o.) once daily (in the morning) for 4 consecutive weeks. After a 2-week acclimatization period, BD mice are fed a BD for 20 weeks. CTRL mice are fed D09100301 for 20 weeks. PEMA-L and PEMA-H mice are fed D09100301 for 12 weeks followed by D09100301 with 0.4 mg and 1.3 mg Pemafibrate/kg of the diet for 8 weeks, which corresponds to 0.03 mg/kg/day and 0.1 mg/kg/day, respectively. FENO mice are fed D09100301 for 12 weeks followed by D09100301 with 666.7 mg fenofibrate/kg of the diet for 8 weeks, which corresponds to 50 mg/kg/day. Pemafibrate and fenofibrate are incorporated into the AMLN diet. Animals are housed under conventional conditions with controlled temperature, humidity, and light (12-h light-dark cycle) and provided with food and water[2].
药代性质 (ADME/PK)
In vitro permeability and in vivo pharmacokinetics of pemafibrate were investigated in human intestinal and animal models untreated or pretreated with cyclosporine A or rifampicin to evaluate any drug interactions. Ratios of basal to apical apparent permeability (Papp) over apical to basal Papp in the presence of pH gradients decreased from 0.37 to 0.080 on rifampicin co-incubation, suggesting active transport of pemafibrate from basal to apical sides in intestinal models. Plasma concentrations of intravenously administered pemafibrate were enhanced moderately in control mice but only marginally in humanized-liver mice by oral pretreatment with rifampicin [an organic anion transporting polypeptide (OATP) 1B1 inhibitor] 1 h before the administration of pemafibrate. In three cynomolgus monkeys genotyped as wild-type OATP1B1 (2 homozygous and 1 heterozygous), oral dosing of cyclosporine A 4 h or rifampicin 1 h before pemafibrate administration significantly increased the areas under the plasma concentration-time curves (AUC) of intravenously administered pemafibrate by 4.9- and 7.4-fold, respectively. Plasma AUC values of three pemafibrate metabolites in cynomolgus monkeys were also increased by cyclosporine A or rifampicin. These results suggested that pemafibrate was actively uptaken in livers and rapidly cleared from plasma in cynomolgus monkeys; this rapid clearance was suppressible by OATP1B1 inhibitors.Drug Metab Pharmacokinet. 2020 Aug;35(4):354-360.
Elevated triglyceride levels are associated with an increased risk of cardiovascular events despite guideline-based statin treatment of low-density lipoprotein cholesterol. Peroxisome proliferator-activated receptor α (PPARα) agonists exert a significant triglyceride-lowering effect. However, combination therapy of PPARα agonists with statins poses an increased risk of rhabdomyolysis, which is rare but a major concern of the combination therapy. Pharmacokinetic interaction is suspected to be a contributing factor to the risk. To examine the potential for combination therapy with the selective PPARα modulator (SPPARMα) pemafibrate and statins, drug-drug interaction studies were conducted with open-label, randomized, 6-sequence, 3-period crossover designs for the combination of pemafibrate 0.2 mg twice daily and each of 6 statins once daily: pitavastatin 4 mg/day (n = 18), atorvastatin 20 mg/day (n = 18), rosuvastatin 20 mg/day (n = 29), pravastatin 20 mg/day (n = 18), simvastatin 20 mg/day (n = 20), and fluvastatin 60 mg/day (n = 19), involving healthy male volunteers. The pharmacokinetic parameters of pemafibrate and each of the statins were similar regardless of coadministration. There was neither an effect on the systemic exposure of pemafibrate nor a clinically important increase in the systemic exposure of any of the statins on the coadministration although the systemic exposure of simvastatin was reduced by about 15% and its open acid form by about 60%. The HMG-CoA reductase inhibitory activity in plasma samples from the simvastatin and pemafibrate combination group was about 70% of that in the simvastatin alone group. In conclusion, pemafibrate did not increase the systemic exposure of statins, and vice versa, in healthy male volunteers. Clin Transl Sci. 2024 Aug;17(8):e13900.
毒性/毒理 (Toxicokinetics/TK)
Aims: Per the package insert, pemafibrate was contraindicated for use in patients with severe renal impairment despite its biliary excretion. To validate this, we evaluated the pharmacokinetics and safety of pemafibrate for 12 weeks in patients with hypertriglyceridemia and renal impairment.
Methods: In this phase 4, multicenter, placebo-controlled, double-blind, parallel-group, comparative study, 21 patients were randomly assigned to pemafibrate 0.2 mg/day or placebo within Groups A (estimated glomerular filtration rate [eGFR] <30 mL/min/1.73m2 without hemodialysis; pemafibrate n=4; placebo, n=2), B (hemodialysis; pemafibrate, n=4; placebo, n=1), and C (eGFR ≥ 30 and <60 mL/min/1.73m2 without hemodialysis; pemafibrate, n=8; placebo, n=2) for 12 weeks. Area under the concentration vs time curve within the dosing interval (τ) (AUCτ) of pemafibrate was measured after 12-week administration.
Results: The AUCτ (geometric mean) of pemafibrate was 7.333 and 7.991 ng·h/mL in Groups A+B and C, respectively; in Groups A+B to C at 12 weeks, the geometric mean ratio of pemafibrate AUCτ was 0.92 (90% confidence interval [CI]: 0.62, 1.36). The upper limit of the 90% CI was ≤ 2.0 (predetermined criterion). There was no consistent trend in the AUCτ and maximum plasma concentration of pemafibrate with/without statin use. Renal impairment degree did not affect the incidence of adverse events. No safety concerns were observed.
Conclusion: Pemafibrate repeated administration in patients with severe renal impairment did not increase pemafibrate exposure.J Atheroscler Thromb. 2024 Sep 5. doi: 10.5551/jat.64887. O
参考文献

[1]. Design and synthesis of highly potent and selective human\nperoxisome proliferator-activated receptor alpha agonists. Bioorg Med\nChem Lett. 2007 Aug 15;17(16):4689-93.

[2]. Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, improves the pathogenesis in a rodent model of nonalcoholic steatohepatitis. Sci Rep. 2017 Feb 14:7:42477.

[3]. A Novel Selective PPAR\u03b1 Modulator (SPPARM\u03b1), K-877\n(Pemafibrate), Attenuates Postprandial Hypertriglyceridemia in Mice. J\nAtheroscler Thromb. 2018 Feb 1;25(2):142-152.

其他信息
Pemafibrate is a member of the class of 1,3-benzoxazoles that is 1,3-benzoxazol-2-amine in which the amino hydrogens are replaced by 3-[(1R)-1-carboxypropoxy]benzyl and 3-(4-methoxyphenoxy)propyl groups. It is a selective peroxisome proliferator-activated receptor (PPAR)-alpha agonist that is used for the treatment of hyperlipidaemia. It has a role as a PPARalpha agonist, an antilipemic drug and a hepatoprotective agent. It is a member of 1,3-benzoxazoles, a member of methoxybenzenes, a monocarboxylic acid, an aromatic amine and a tertiary amino compound.
Pemafibrate is under investigation in clinical trial NCT03350165 (A Study of Pemafibrate in Patients With Nonalcoholic Fatty Liver Disease (NAFLD)).
Drug Indication
Prevention of cardiovascular events in patients with elevated triglycerides levels, Treatment of hypertriglyceridaemia.
The efficacy of peroxisome proliferator-activated receptor α-agonists (e.g., fibrates) against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) in humans is not known. Pemafibrate is a novel selective peroxisome proliferator-activated receptor α modulator that can maximize the beneficial effects and minimize the adverse effects of fibrates used currently. In a phase-2 study, pemafibrate was shown to improve liver dysfunction in patients with dyslipidaemia. In the present study, we first investigated the effect of pemafibrate on rodent models of NASH. Pemafibrate efficacy was assessed in a diet-induced rodent model of NASH compared with fenofibrate. Pemafibrate and fenofibrate improved obesity, dyslipidaemia, liver dysfunction, and the pathological condition of NASH. Pemafibrate improved insulin resistance and increased energy expenditure significantly. To investigate the effects of pemafibrate, we analysed the gene expressions and protein levels involved in lipid metabolism. We also analysed uncoupling protein 3 (UCP3) expression. Pemafibrate stimulated lipid turnover and upregulated UCP3 expression in the liver. Levels of acyl-CoA oxidase 1 and UCP3 protein were increased by pemafibrate significantly. Pemafibrate can improve the pathogenesis of NASH by modulation of lipid turnover and energy metabolism in the liver. Pemafibrate is a promising therapeutic agent for NAFLD/NASH.[2]
Aims: Fasting and postprandial hypertriglyceridemia (PHTG) are caused by the accumulation of triglyceride (TG)-rich lipoproteins and their remnants, which have atherogenic effects. Fibrates can improve fasting and PHTG; however, reduction of remnants is clinically needed to improve health outcomes. In the current study, we investigated the effects of a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα), K-877 (Pemafibrate), on PHTG and remnant metabolism. Methods: Male C57BL/6J mice were fed a high-fat diet (HFD) only, or an HFD containing 0.0005% K-877 or 0.05% fenofibrate, from 8 to 12 weeks of age. After 4 weeks of feeding, we measured plasma levels of TG, free fatty acids (FFA), total cholesterol (TC), HDL-C, and apolipoprotein (apo) B-48/B-100 during fasting and after oral fat loading (OFL). Plasma lipoprotein profiles after OFL, which were assessed by high performance liquid chromatography (HPLC), and fasting lipoprotein lipase (LPL) activity were compared among the groups. Results: Both K-877 and fenofibrate suppressed body weight gain and fasting and postprandial TG levels and enhanced LPL activity in mice fed an HFD. As determined by HPLC, K-877 and fenofibrate significantly decreased the abundance of TG-rich lipoproteins, including remnants, in postprandial plasma. Both K-877 and fenofibrate decreased intestinal mRNA expression of ApoB and Npc1l1; however, hepatic expression of Srebp1c and Mttp was increased by fenofibrate but not by K-877.Hepatic mRNA expression of apoC-3 was decreased by K-877 but not by fenofibrate. Conclusion: K-877 may attenuate PHTG by suppressing the postprandial increase of chylomicrons and the accumulation of chylomicron remnants more effectively than fenofibrate.[3]
Diabetes mellitus accelerates the hyperglycemia susceptibility-induced injury to cardiac cells. The activation of peroxisome proliferator-activated receptor α (PPARα) decreases ischemia-reperfusion (IR) injury in animals without diabetes. Therefore, the present study hypothesized that pemafibrate may exert a protective effect on the myocardium in vivo and in vitro. A type 1 diabetes mellitus (T1DM) rat model and H9c2 cells exposed to high glucose under hypoxia and reoxygenation treatments were used in the present study. The rat model and the cells were subsequently treated with pemafibrate. In the T1DM rat model, pemafibrate enhanced the expression of PPARα in the diabetic-myocardial ischemia-reperfusion injury (D-IRI) group compared with the D-IRI group. The infarct size in the D-IRI group was reduced following pemafibrate treatment relative to the untreated group. The disruption of the mitochondrial structure and myofibrils in the D-IRI group was partially recovered by pemafibrate. In addition, to evaluate the mechanism of action of pemafibrate in the treatment of diabetic myocardial IR injury, an in vitro model was established. PPARα protein expression levels were reduced in the high glucose and hypoxia/reoxygenation (H/R) groups compared with that in the control or high glucose-treated groups. Pemafibrate treatment significantly enhanced the ATP and superoxide dismutase levels, and reduced the mitochondrial reactive oxygen species and malondialdehyde levels compared with the high glucose combined with H/R group. Furthermore, pemafibrate inhibited the expression of cytochrome c and cleaved-caspase-3, indicating its involvement in the regulation of mitochondrial apoptosis. Pemafibrate also reduced the expression of nuclear factor-κB (NF-κB), the activation of which reversed the protective effects of pemafibrate on diabetic myocardial IR injury in vitro. Taken together, these results suggested that pemafibrate may activate PPARα to protect the T1DM rat myocardium against IR injury through inhibition of NF-κB signaling.https://pmc.ncbi.nlm.nih.gov/articles/PMC7903427/
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C28H30N2O6
分子量
490.556
精确质量
490.21
元素分析
C, 68.56; H, 6.16; N, 5.71; O, 19.57
CAS号
848259-27-8
相关CAS号
950644-31-2 (sodium); 848258-31-1 (racemate); 848259-27-8 (free acid);
PubChem CID
11526038
外观&性状
White to yellow solid powder
LogP
5.554
tPSA
94.26
氢键供体(HBD)数目
1
氢键受体(HBA)数目
8
可旋转键数目(RBC)
13
重原子数目
36
分子复杂度/Complexity
658
定义原子立体中心数目
1
SMILES
CC[C@H](C(=O)O)OC1=CC=CC(=C1)CN(CCCOC2=CC=C(C=C2)OC)C3=NC4=CC=CC=C4O3
InChi Key
ZHKNLJLMDFQVHJ-RUZDIDTESA-N
InChi Code
InChI=1S/C28H30N2O6/c1-3-25(27(31)32)35-23-9-6-8-20(18-23)19-30(28-29-24-10-4-5-11-26(24)36-28)16-7-17-34-22-14-12-21(33-2)13-15-22/h4-6,8-15,18,25H,3,7,16-17,19H2,1-2H3,(H,31,32)/t25-/m1/s1
化学名
(R)-2-(3-((benzo[d]oxazol-2-yl(3-(4-methoxyphenoxy)propyl)amino)methyl)phenoxy)butanoic acid
别名
K877; (R)-K13675; K-877; (R)-K 13675; K 877; 848259-27-8; Pemafibrate [INN]; (R)-K-13675; K-13675, (R)-; (R)-2-(3-((benzo[d]oxazol-2-yl(3-(4-methoxyphenoxy)propyl)amino)methyl)phenoxy)butanoic acid; CHEMBL247951; CAS#848259-27-8; (R) K-13675; Pemafibrate sodium; (R)-K 13675; Parmodia
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.0385 mL 10.1924 mL 20.3849 mL
5 mM 0.4077 mL 2.0385 mL 4.0770 mL
10 mM 0.2038 mL 1.0192 mL 2.0385 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Efficacy and Safety of Pemafibrate for Nonalcoholic Fatty Liver Disease
CTID: NCT06623539
Phase: Phase 2
Status: Active, not recruiting
Date: 2024-10-02
Pemafibrate to Reduce Cardiovascular OutcoMes by Reducing Triglycerides IN patiENts With diabeTes (PROMINENT)
CTID: NCT03071692
Phase: Phase 3
Status: Terminated
Date: 2023-07-13
A Phase III Confirmatory Study of K-877 (Pemafibrate) in Patients With Hypercholesterolemia and Statin Intolerance
CTID: NCT05923281
Phase: Phase 3
Status: Recruiting
Date: 2023-06-28
Study to Evaluate the Efficacy and Safety of K-877 in Adult Patients With Fasting High Triglyceride Levels and Normal Renal Function
CTID: NCT03001817
Phase: Phase 3
Status: Completed
Date: 2022-11-30
Study to Evaluate the Efficacy and Safety of K-877 in Adult Patients With Fasting High Triglyceride Levels and Mild or Moderate Renal Impairment
CTID: NCT03011450
Phase: Phase 3
Status: Completed
Date: 2022-10-28
相关产品
联系我们