4μ8C (IRE1 Inhibitor III)

别名: 4μ8C; 4u8C; 4U8C; 7-hydroxy-4-methyl-2-oxo-2H-chromene-8-carbaldehyde; 4mu8C; 4; I8C; IRE1 Inhibitor III; 7-hydroxy-4-methyl-2-oxochromene-8-carbaldehyde; 7-Hydroxy-4-methyl-2-oxo-2H-1-benzopyran-8-carboxaldehyde; 4Mu8C 8-甲酰基-4-甲基伞形酮;7-羟基-4-甲基-2-氧代-2H-色烯-8-甲醛;8-甲酰基-7-羟基-4-甲基香豆素
目录号: V1952 纯度: ≥98%
4μ8C(也称为 IRE1 Inhibitor III)是一种有效的选择性 IRE1 Rnase 抑制剂 (IC50 = 76 nM),具有治疗代谢疾病的潜力。
4μ8C (IRE1 Inhibitor III) CAS号: 14003-96-4
产品类别: IRE1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
4μ8C (also known as IRE1 Inhibitor III) is a potent and selective IRE1 Rnase inhibitor (IC50 = 76 nM) with the potential for metabolic diseases. In addition to inhibiting Xbp1 splicing and IRE1-mediated mRNA degradation, 4μ8C also prevents substrate(RIDD) access to the active site of IRE1. Without detectable acute toxicity, IRE1 inhibition subsequently causes ER stress. 4μ8C, an IRE1 inhibitor, prevents CD4+ T cells from producing IL-4, IL-5, and IL-13.
生物活性&实验参考方法
靶点
IRE1 Rnase (IC50 = 76 nM)
体外研究 (In Vitro)
除了抑制Xbp1剪接和IRE1介导的mRNA降解外,4μ8C还可以阻止底物(RIDD)进入IRE1的活性位点。在没有可检测到的急性毒性的情况下,IRE1抑制随后会导致ER应激。[1]
4μ8C,通过充当IRE1抑制剂阻断CD4+T细胞产生IL-4、IL-5和IL-13的能力。[2]
体内研究 (In Vivo)
4μ8c是一种IRE1抑制剂III,可减少小鼠动脉粥样硬化病变并有效预防斑块形成。4μ8c以剂量依赖的方式抑制IgE介导的肥大细胞的脱颗粒(IC50=3.2μM)和肿瘤坏死因子-α(TNF-α)和白细胞介素-4(IL-4)等细胞因子的产生。4μ8C还抑制了小鼠的被动皮肤过敏反应(PCA)(ED50=25.1mg/kg)。在抗原刺激肥大细胞信号通路的实验中,Syk的磷酸化和活化降低了4μ8C,下游信号分子的磷酸化,如活化T细胞接头(LAT)、Akt和三种MAP激酶ERK、p38和JNK的磷酸化受到抑制。机制研究表明,4μ8C在体外抑制Lyn和Fyn的活性。基于这些实验的结果,4μ8C的过敏反应抑制机制涉及Lyn和Fyn活性的降低,这在IgE介导的信号通路中至关重要。总之,本研究首次表明,4μ8C抑制Lyn和Fyn,从而通过减少脱颗粒和炎性细胞因子的产生来抑制过敏反应。这表明4μ8C可以作为一种新的候选药物来控制季节性过敏和特应性皮炎等过敏性疾病[4]。
酶活实验
除了使用哺乳动物IRE1反应缓冲液外,遵循与之前相同的程序来分析放射性标记的Xbp1底物切割。体外RIDD底物是在32P ATP或Cy5 UTP存在下,使用T7 MAXIscript试剂盒在通过RT-PCR从小鼠Min6细胞(Ins2)分离的模板上或通过PCR从克隆的XBP1 cDNA上进行体外转录而产生的。为了获得全长底物,将生产的产品进行凝胶纯化。接下来,在使用LI-COR Odyssey扫描仪进行磷化或近红外成像分析之前,用15%尿素聚丙烯酰胺凝胶对反应进行分离。
细胞实验
在96或24孔培养皿中,细胞以每孔5×103或5×104的密度接种在无酚红细胞培养基中。在暴露于48℃24小时之前,将培养物孵育16小时。然后添加200 M WST1和10 M吩嗪硫酸甲酯来分析培养物。在37°C下试剂显影2小时后,减去背景和595nm处的吸光度,通过450nm处的吸光度检测水解染料。作为替代方案,可以用结晶紫对贴壁培养物进行染色,以确定细胞的存活率。在水中彻底洗涤染色细胞并将结晶紫溶解在甲醇中后,使用595nm处的吸光度测量来量化染料吸收。
动物实验
C57BL/6 mice
10 mg/kg
i.p.
Mice and Treatments. ApoE−/− mice in a C57BL/6 background (Charles River WIGA GmbH) were used in atherosclerosis experiments. Starting from 8 weeks of age, male mice were fed a Western diet (TD88137 mod. containing 21% fat and 0.2% cholesterol; Ssniff) for 6 weeks. Then, the mice were injected with STF-083010 (10 mg/kg) or DMSO, both given in 16% (vol/vol) Cremophor EL saline solution via i.p. injections as described previously, for 6 more weeks while mice were continued on the Western diet. The other ApoE−/− mice that were used in atherosclerosis experiments were fed a Western diet for 8 weeks. Then, they were injected with 4µ8c (10 mg/kg) or DMSO, both given in 16% (vol/vol) Cremophor EL saline solution via i.p. injections as described previously, for 4 more weeks while mice were continued on Western diet. Weights were measured every other day, whereas blood glucose concentrations were measured before and after treatments. At the end of the experiment, mice were anesthetized, and blood was collected by cardiac puncture. Bone marrow, spleen, and liver tissues were collected, frozen immediately into liquid nitrogen, and stored at −80 °C. Perfusion was performed with ice-cold PBS and heparin (1,000 U/mL) followed by 10% formalin solution. After fixation, the aorta was dissected intact, immersed immediately in 10% formalin, and stored at 4 °C until analysis. The heart was removed at the proximal aorta, placed into a tissue mold, covered with OCT (optimal cutting temperature compound), frozen in cold isobutene solution, and stored at −80 °C. [3]
参考文献

[1]. Proc Natl Acad Sci U S A . 2012 Apr 10;109(15):E869-78.

[2]. J Biol Chem . 2013 Nov 15;288(46):33272-82.

[3]. Proc Natl Acad Sci U S A . 2017 Feb 21;114(8):E1395-E1404.

[4]. Toxicol Appl Pharmacol. 2017 Oct 1:332:25-31.
其他信息
IRE1 couples endoplasmic reticulum unfolded protein load to RNA cleavage events that culminate in the sequence-specific splicing of the Xbp1 mRNA and in the regulated degradation of diverse membrane-bound mRNAs. We report on the identification of a small molecule inhibitor that attains its selectivity by forming an unusually stable Schiff base with lysine 907 in the IRE1 endonuclease domain, explained by solvent inaccessibility of the imine bond in the enzyme-inhibitor complex. The inhibitor (abbreviated 4μ8C) blocks substrate access to the active site of IRE1 and selectively inactivates both Xbp1 splicing and IRE1-mediated mRNA degradation. Surprisingly, inhibition of IRE1 endonuclease activity does not sensitize cells to the consequences of acute endoplasmic reticulum stress, but rather interferes with the expansion of secretory capacity. Thus, the chemical reactivity and sterics of a unique residue in the endonuclease active site of IRE1 can be exploited by selective inhibitors to interfere with protein secretion in pathological settings.[1]
Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis.[3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C11H8O4
分子量
204.18
精确质量
204.042
元素分析
C, 64.71; H, 3.95; O, 31.34
CAS号
14003-96-4
相关CAS号
14003-96-4
PubChem CID
12934390
外观&性状
Light yellow to yellow solid powder
密度
1.406±0.06 g/cm3 (20 ºC 760 Torr)
熔点
189-190 ºC (ethanol )
LogP
1.619
tPSA
67.51
氢键供体(HBD)数目
1
氢键受体(HBA)数目
4
可旋转键数目(RBC)
1
重原子数目
15
分子复杂度/Complexity
321
定义原子立体中心数目
0
SMILES
O1C(C([H])=C(C([H])([H])[H])C2C([H])=C([H])C(=C(C([H])=O)C1=2)O[H])=O
InChi Key
RTHHSXOVIJWFQP-UHFFFAOYSA-N
InChi Code
InChI=1S/C11H8O4/c1-6-4-10(14)15-11-7(6)2-3-9(13)8(11)5-12/h2-5,13H,1H3
化学名
7-hydroxy-4-methyl-2-oxochromene-8-carbaldehyde
别名
4μ8C; 4u8C; 4U8C; 7-hydroxy-4-methyl-2-oxo-2H-chromene-8-carbaldehyde; 4mu8C; 4; I8C; IRE1 Inhibitor III; 7-hydroxy-4-methyl-2-oxochromene-8-carbaldehyde; 7-Hydroxy-4-methyl-2-oxo-2H-1-benzopyran-8-carboxaldehyde; 4Mu8C
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~19 mg/mL (~93.0 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (10.19 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 5%DMSO+40%PEG300+5%Tween80+50%ddH2O: 0.5mg/mL

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 4.8976 mL 24.4882 mL 48.9764 mL
5 mM 0.9795 mL 4.8976 mL 9.7953 mL
10 mM 0.4898 mL 2.4488 mL 4.8976 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • 4μ8C

    Stable binding of 4μ8C to IRE1 lysine 907. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):E869-78.
  • 4μ8C

    Selective targeting of the IRE1 RNase by 4μ8C in vivo. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):E869-78.
  • 4μ8C

    Inhibition of RIDD by 4μ8C. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):E869-78.
相关产品
联系我们