规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
SIRT3 ( IC50 = 16 nM ); SIRT1 ( IC50 = 88 nM ); SIRT2 ( IC50 = 92 nM )
|
---|---|
体外研究 (In Vitro) |
3-TYP 抑制褪黑激素增强的 SIRT3 活性,但不影响 SIRT3 蛋白表达。 3-TYP 预处理可逆转褪黑激素对镉 (Cd) 诱导的线粒体 O2•− 产生和自噬细胞死亡的保护作用。 3-TYP 显着减弱褪黑激素诱导的暴露于 Cd 的 HepG2 细胞中脱乙酰 SOD2 表达和 SOD2 活性的增加[1]。
|
体内研究 (In Vivo) |
与 Sham 组相比,3-TYP(50 mg/kg,ip)对 LVEF、LVFS、梗塞面积、血清 LDH 水平、细胞凋亡和氧化应激没有显着影响。此外,与Sham组相比,3-TYP对gp91phox、Nrf2、NQO 1、Bax、Bcl-2、Caspase-3和cleaved Caspase-3表达水平几乎没有影响。与对照组相比,3-TYP显着降低SIRT3活性并增加SOD2乙酰化,但不影响SIRT3表达。 3-TYP 通过降低再灌注 24 小时后的 LVEF 和 LVFS 来减弱褪黑激素的心脏保护作用。与 IR+Mel 组相比,3-TYP 还增加了梗死面积、血清 LDH 水平和细胞凋亡率 [2]。
|
酶活实验 |
SIRT3抑制剂(3-TYP)用于证实褪黑素参与镉诱导的自噬,并破坏SIRT3调节的线粒体来源的O2•−产生。3-TYP是一种选择性SIRT3抑制剂。31暴露于3-TYP会抑制褪黑素增强SIRT3活性,但不影响SIRT3蛋白表达(图S6A和B)。此外,3-TYP预处理逆转了褪黑素对镉诱导的线粒体来源的O2•−产生和自噬细胞死亡的保护作用(图9A-C和图S3F)。如图9D和9E所示,在暴露于镉的HepG2细胞中,3-TYP显著减弱了褪黑素诱导的脱乙酰基-SOD2表达和SOD2活性的增加[1]。
|
细胞实验 |
使用 Cell Counting Kit-8 分析细胞活力。简而言之,将1×104个细胞接种到96孔板中。处理后,每孔加入90μL培养基和10μL CCK-8溶液。然后将细胞在 37°C 下孵育 2 小时。孵育后,使用 Infinite™ M200 酶标仪测量 450 nm 处的吸光度。结果以对照的百分比表示。还使用台盼蓝测定法评估细胞死亡。 HepG2细胞接种于6孔板中(每孔5×105个细胞)并孵育24小时。用 Cd 或褪黑激素处理后,用 300 μL 胰蛋白酶-EDTA 溶液分离细胞。将分离的细胞混合物以 300 g 离心 5 分钟。然后,将残余物与800μL台盼蓝溶液混合并分散。染色 3 分钟后,使用自动细胞计数器对细胞进行计数。死亡细胞被染成蓝色。细胞死亡率(%)表示为死细胞数/总细胞数的百分比。
|
动物实验 |
In brief, a 6-0 silk suture slipknot is wrapped around the left anterior descending coronary artery to temporarily exteriorize the heart in male C57BL/6 mice under 2% isoflurane anesthesia. Following 30 minutes of myocardial ischemia, the myocardium is reperfused for 3 hours (to measure oxidative stress and perform a western blot analysis) or 24 hours (to assess infarct size, cardiac function, and apoptotic index). The slipknot is then released. The identical surgical procedures are performed on sham-operated mice, with the exception that the suture under the left coronary artery is left untied. Mice are randomized to receive an intraperitoneal injection of either melatonin (20 mg/kg) or vehicle (1% ethanol) ten minutes prior to reperfusion. The C57BL/6 mice are split into the following groups at random: (i) Sham group: mice underwent the sham operation and are treated with vehicle (1% ethanol); (ii) Mel group: mice are treated with melatonin (20 mg/kg via intraperitoneal injection); (iii) IR+V group: mice underwent the MI/R operation and are treated with vehicle (1% ethanol); (iv) IR+Mel group: mice underwent the MI/R operation and are treated with melatonin (20 mg/kg via intraperitoneal injection 10 minutes before reperfusion); (v) IR+Mel+3-TYP group: mice are pretreated with 3-TYP (3-TYP is intraperitoneally injected at a dose of 50 mg/kg every 2 days for a total of three doses prior to the MI/R surgery), subjected to the MI/R operation, and treated with melatonin (20 mg/kg via intraperitoneal injection 10 minutes before reperfusion); and (vi) IR+3-TYP group: mice are pretreated with 3-TYP and then subjected to the MI/R operation.
|
参考文献 |
|
其他信息 |
Cadmium is one of the most toxic metal compounds found in the environment. It is well established that Cd induces hepatotoxicity in humans and multiple animal models. Melatonin, a major secretory product of the pineal gland, has been reported to protect against Cd-induced hepatotoxicity. However, the mechanism behind this protection remains to be elucidated. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10 μM) for 12 h. We found that Cd induced mitochondrial-derived superoxide anion-dependent autophagic cell death. Specifically, Cd decreased SIRT3 protein expression and activity and promoted the acetylation of SOD2, superoxide dismutase 2, mitochondrial, thus decreasing its activity, a key enzyme involved in mitochondrial ROS production, although Cd did not disrupt the interaction between SIRT3 and SOD2. These effects were ameliorated by overexpression of SIRT3. However, a catalytic mutant of SIRT3 (SIRT3(H248Y)) lacking deacetylase activity lost the capacity to suppress Cd-induced autophagy. Notably, melatonin treatment enhanced the activity but not the expression of SIRT3, decreased the acetylation of SOD2, inhibited mitochondrial-derived O2(•-) production and suppressed the autophagy induced by 10 μM Cd. Moreover, 3-(1H-1,2,3-triazol-4-yl)pyridine, a confirmed selective SIRT3 inhibitor, blocked the melatonin-mediated suppression of autophagy by inhibiting SIRT3-SOD2 signaling. Importantly, melatonin suppressed Cd-induced autophagic cell death by enhancing SIRT3 activity in vivo. These results suggest that melatonin exerts a hepatoprotective effect on mitochondrial-derived O2(•-)-stimulated autophagic cell death that is dependent on the SIRT3/SOD2 pathway.[1]
Sirtuins are a family of highly evolutionarily conserved nicotinamide adenine nucleotide-dependent histone deacetylases. Sirtuin-3 (SIRT3) is a member of the sirtuin family that is localized primarily to the mitochondria and protects against oxidative stress-related diseases, including myocardial ischemia/reperfusion (MI/R) injury. Melatonin has a favorable effect in ameliorating MI/R injury. We hypothesized that melatonin protects against MI/R injury by activating the SIRT3 signaling pathway. In this study, mice were pretreated with or without a selective SIRT3 inhibitor and then subjected to MI/R operation. Melatonin was administered intraperitoneally (20 mg/kg) 10 minutes before reperfusion. Melatonin treatment improved postischemic cardiac contractile function, decreased infarct size, diminished lactate dehydrogenase release, reduced the apoptotic index, and ameliorated oxidative damage. Notably, MI/R induced a significant decrease in myocardial SIRT3 expression and activity, whereas the melatonin treatment upregulated SIRT3 expression and activity, and thus decreased the acetylation of superoxide dismutase 2 (SOD2). In addition, melatonin increased Bcl-2 expression and decreased Bax, Caspase-3, and cleaved Caspase-3 levels in response to MI/R. However, the cardioprotective effects of melatonin were largely abolished by the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP), suggesting that SIRT3 plays an essential role in mediating the cardioprotective effects of melatonin. In vitro studies confirmed that melatonin also protected H9c2 cells against simulated ischemia/reperfusion injury (SIR) by attenuating oxidative stress and apoptosis, while SIRT3-targeted siRNA diminished these effects. Taken together, our results demonstrate for the first time that melatonin treatment ameliorates MI/R injury by reducing oxidative stress and apoptosis via activating the SIRT3 signaling pathway.[2] |
分子式 |
C7H6N4
|
---|---|
分子量 |
146.1493
|
精确质量 |
146.059
|
元素分析 |
C, 57.53; H, 4.14; N, 38.34
|
CAS号 |
120241-79-4
|
PubChem CID |
9833992
|
外观&性状 |
White to off-white solid powder
|
LogP |
0.866
|
tPSA |
54.46
|
氢键供体(HBD)数目 |
1
|
氢键受体(HBA)数目 |
3
|
可旋转键数目(RBC) |
1
|
重原子数目 |
11
|
分子复杂度/Complexity |
128
|
定义原子立体中心数目 |
0
|
SMILES |
N1=C(C([H])=NN1[H])C1=C([H])N=C([H])C([H])=C1[H]
|
InChi Key |
VYXFEFOIYPNBFK-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C7H6N4/c1-2-6(4-8-3-1)7-5-9-11-10-7/h1-5H,(H,9,10,11)
|
化学名 |
3-(2H-triazol-4-yl)pyridine
|
别名 |
3 TYP; 3-TYP; 120241-79-4; 3-TYP; 3-(1H-1,2,3-triazol-4-yl)pyridine; Pyridine(3-TYP); 3-(1H-1,2,3-triazol-4-yl) pyridine; CHEMBL373134; MFCD25956467; Pyridine, 3-(1H-1,2,3-triazol-5-yl)-; 3TYP
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : 29~125 mg/mL (198.4~855.3 mM)
Water : ~1.3 mg/mL (~8.6 mM) Ethanol : 16.7~29 mg/mL (114.1~198.4 mM) |
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.08 mg/mL (14.23 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (14.23 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (14.23 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 6.8423 mL | 34.2114 mL | 68.4229 mL | |
5 mM | 1.3685 mL | 6.8423 mL | 13.6846 mL | |
10 mM | 0.6842 mL | 3.4211 mL | 6.8423 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。