1,4-Naphthoquinone

别名: 1,4Naphthoquinone; 1,4 Naphthoquinone 1,4-萘醌;1,4-萘二酮;α-萘醌;1,2-萘二酮;Β-萘醌;1,4-萘二醌;1,4-萘喹酮; 1,4-Naphthoquinone 1,4-萘醌;1,4-蒽醌;1,4-萘醌,AR;1,4-萘醌原药;1.4-萘醌;对萘醌; 萘-1,4-二酮;萘醌;1,4-二氢-1,4-二酮萘;1,4-二氢-1,4-萘二酮;1,4-萘醌 标准品;俨萘醌
目录号: V38895 纯度: ≥98%
1,4-Naphthoquinone 是一种潜在的药效基团,可以抑制 MAO(单胺氧化酶)MAO 和 DNA 拓扑异构酶活性。
1,4-Naphthoquinone CAS号: 130-15-4
产品类别: New2
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
100mg
Other Sizes

Other Forms of 1,4-Naphthoquinone:

  • 1,4-Naphthoquinone-d6
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
1,4-Naphthoquinone 是一种潜在的药效基团,可以抑制 MAO(单胺氧化酶)MAO 和 DNA 拓扑异构酶活性。 DNA拓扑异构酶活性与抗肿瘤活性相关。
生物活性&实验参考方法
药代性质 (ADME/PK)
Metabolism / Metabolites
Yields 1,4-dihydroxynaphthalene in pig; in pea; in Escherichia coli; in desulfovibrio gigas. /From Table/
Yields 5-hydroxy-1,4-naphthoquinone in juglans; 1,4-naphthosemiquinone in Escherichia coli. /From Table/
By using HPLC with reductive electrochemical detection, it was shown that 1-naphthol is converted to naphthoquinone metabolites by rat liver microsomes. At least two metabolic pathways, independent of cytochrome p450, appear to be involved. Fe-dependent lipid peroxidation appears to be responsible for at least part of the conversion of 1-naphthol to predominantly 1,4-naphthoquinone, and it seems likely that superoxide anion radical generation by NADPH-cytochrome p450 reductase could also catalyze this conversion. 1-Naphthol therefore seems to be converted to cytotoxic naphthoquinone metabolites by mechanisms dependent upon the generation of free radicals in rat liver microsomes.
Carbonyl reductase, ... a cytosolic monomeric oxidoreductase of broad specificity for carbonyl compounds, was the main NADPH-dependent quinone reductase in human liver, whereas DT-diaphorase, the principal 2-electron-transferring quinone reductase in rat liver, contributed a very minor part to the quinone reductase activity of human liver. Carbonyl reductase provides the enzymic basis for the reduction of a great variety of natural and man-made quinones. Generally, oxo groups at chemically reactive positions (K-region) were more efficiently reduced than those at more inert positions. The best substrates were the K-region o-quinones of the polycyclic aromatic hydrocarbons phenanthrene, pyrene, benz(a)anthracene, and benzo(a)pyrene. ... non-K-region o-quinones, 1,2-naphthoquinone and 1,2-anthraquinone ... were the best substrates. ...
For more Metabolism/Metabolites (Complete) data for 1,4-NAPHTHOQUINONE (9 total), please visit the HSDB record page.
参考文献

[1]. Beyond topoisomerase inhibition: antitumor 1,4-naphthoquinones as potential inhibitors of human monoamine oxidase. Chem Biol Drug Des. 2014 Apr;83(4):401-10.

其他信息
1,4-naphthoquinone appears as yellow needles or brownish green powder with an odor of benzoquinone. (NTP, 1992)
1,4-naphthoquinone is the parent structure of the family of 1,4-naphthoquinones, in which the oxo groups of the quinone moiety are at positions 1 and 4 of the naphthalene ring. Derivatives have pharmacological properties. It derives from a hydride of a naphthalene.
1,4-Naphthoquinone has been reported in Juglans regia and Juglans nigra with data available.
1,4-Naphthoquinone or para-naphthoquinone is an organic compound derived from naphthalene. Several isomeric naphthoquinones are known, notably 1,2-naphthoquinone. 1,4-Naphthoquinone forms volatile yellow triclinic crystals and has a sharp odor similar to benzoquinone. It is almost insoluble in cold water, slightly soluble in petroleum ether, and more soluble in polar organic solvents. In alkaline solutions it produces a reddish-brown color. Vitamin K is a derivative of 1,4-naphthoquinone. It is a planar molecule with one aromatic ring fused to a quinone subunit. Naphthalene is a constituent of jet fuel, diesel fuel and cigarette smoke. It is also a byproduct of incomplete combustion and hence is an ubiquitous environmental pollutant. The typical air concentration of naphthalene in cities is about 0.18 ppb.

See also: ... View More ...
Mechanism of Action
Quinones are alpha-beta-unsaturated ketones & react with sulfhydryl groups. ... Critical biochem lesion ... /involves/ -SH groups of enzymes such as amylase & carboxylase which are inhibited by quinones. Overall mechanism may involve binding of enzyme to quinone nucleus by substitution or addition at the double bond, an oxidative reaction with -SH group, & change in redox potential. /Quinones/
The mechanism of the toxicity of 1-naphthol in isolated rat hepatocyte was related to the formation of active oxygen species and the creation of an oxidative stress. Dicoumarol potentiated the cytotoxicity of 1-naphthoI by inhibiting DT-diaphorase and making more naphthoquinone metabolites available for redox cycling. /Naphthoquinone metabolites/
The possible mechanisms of naphthoquinone-induced toxicity to isolated hepatocytes were investigated by using three structurally-related naphthoquinones, 1,4-naphthoquinone (1,4-NQ), 2-methyl-1,4-naphthoquinone, and 2,3-dimethyl-1,4-naphthoquinone (2,3-diMe-1,4-NQ). 1,4-NQ was more toxic than 2-Me-1,4-NQ whereas 2,3-diMe-1,4-NQ did not cause cell death solubility-limited concentrations used. All three naphthoquinones extensively depleted intracellular GSH. However, the depletion of GSH induced by 1,4-NQ and 2-Me-1,4-NQ prior to cell death was more rapid and extensive than that induced by the non-toxic 2,3-diMe-1,4-NQ. Further studies demonstrated that 2,3-diMe-1,4-NQ was cytotoxic in the presence of dicoumarol, a cmpd which also potentiates the cytotoxicity of 1,4-NQ and 2-Me-1,4-NQ. To investigate the differential cytotoxicity of these three naphthoquinones, their relative capacities to redox cycle and to bind covalently to cellular nucleophiles were assessed. Redox cycling was investigated by using rat liver microsomes where the order of potency for quinone-stimulated redox cycling was 1,4-NQ ... 2-Me-1,4-NQ ... and 2,3-diMe-1,4-NQ as indicated by non-stoichiometric amounts of NADPH oxidation and O consumption. NADPH-cytochrome p450 reductase was implicated as the enzyme primarily responsible for naphthoquinone-stimulated redox cycling. The reactivity of the naphthoquinones with GSH and, by implication, with other cellular nucleophiles was 1,4-NQ > 2-Me-1,4-NQ and much > 2,3-diMe-1,4-NQ. Overall, these studies indicate that 2,3-diMe-1,4-NQ is not cytotoxic (except in the presence of dicoumarol) and this lack of toxicity may be related either to its lesser capacity to redox cycle and/or its inability to react directly with cellular nucleophiles.
Mechanisms by which quinones of varying reactivity alter mitochondrial membrane permeability were examined. Rat liver mitochondria were incubated with 0 to 10-3 molar (M) menadione (MQ), 1,4-naphthoquinone (NQ), 1,4-benzoquinone (BQ), 2,3-dimethoxy-1,4-naphthoquinone (DiOMeNQ), or 2,3-dimethyl-1,4-naphthoquinone (DiMeNQ) for 3 minutes after which 0 or 20 uM calcium-chloride was added. Release of calcium-ion (Ca2+) was monitored for 28 minutes. The effects on the state of polarization of the mitochondrial membrane and induction of mitochondrial swelling were determined. MQ, NQ, BQ, DiOMeNQ, and DiMeNQ accumulated all of the added Ca2+, but then released it following a lag period which decreased with increasing concentration. The concentrations inducing 50% Ca2+ release were: NQ, 1.6 uM; BQ, 5.3 uM; MQ, 41.6 uM; DiOMeNQ, 89.9 uM; and DiMeNQ 232.7 uM. The release of Ca2+ was accompanied by depolarization of the membrane potential and induction of mitochondrial swelling. Rat liver mitochondria were pretreated with 0.2 millimolar potassium-cyanide, then treated with 0 to 10-3 M NQ, BQ, MQ, DiOMeNQ, or DiMeNQ. Redox recycling reactivity of the compounds was assessed by measuring the rates of cyanide insensitive oxygen consumption (CIOC). All compounds except BQ caused concentration dependent increases in CIOC. MQ, DiOMeNQ, and DiMeNQ at their EC50s for Ca2+ release induced similar rates of CIOC. BQ and NQ induced very little CIOC at their EC50s. Rat liver mitochondria were pretreated with 0 or 400 nanomolar cyclosporin-A (cycA) and then incubated with NQ, BQ, MQ, DiOMeNQ, or DiMeNQ at their EC50s for Ca2+ release. This was followed by addition of 70 uM calcium-chloride. CycA completely inhibited release of Ca2+ by NQ, MQ, DiOMeNQ, and DiMeNQ. BQ accumulated very little Ca2+ before releasing it; however, the rate of release was slowed by cycA. The authors conclude that quinones that can undergo redox recycling (DiOMeNQ, DiMeNQ, MQ, and NQ) can permeabilize mitochondrial membranes by altering regulation of cycA sensitive pores. Arylating quinones such as BQ alter mitochondrial membrane permeability by depolarizing the membrane.
...1,4-Naphthoquinone (a reactive metabolite of 1-naphthol) with reducing agents such as NADPH and glutathione led to the formation of semiquinone-free radicals, which were detected with electron spin resonance spectroscopy. In the presence of glutathione as a reducing agent, menadione and 1,4-naphthoquinone underwent net one-electron reduction and conjugation with glutathione. At higher concentrations of glutathione, 1,4-naphthoquinone formed the semiquinones of both the monoconjugate and the diconjugate. The naphthoquinone-glutathione conjugates should redox cycle in a manner already known for the menadione conjugate. The semiquinone intermediates could be detected only under a nitrogen atmosphere and are probably the primary oxygen-reactive species responsible for the redox cycling of menadione- and naphthoquinone-glutathione conjugates.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C₁₀H₆O₂
分子量
158.16
精确质量
158.036
CAS号
130-15-4
相关CAS号
1,4-Naphthoquinone-d6;26473-08-5
PubChem CID
8530
外观&性状
Light yellow to yellow solid powder
密度
1.3±0.1 g/cm3
沸点
297.9±40.0 °C at 760 mmHg
熔点
119-122 °C(lit.)
闪点
111.2±24.3 °C
蒸汽压
0.0±0.6 mmHg at 25°C
折射率
1.617
LogP
1.79
tPSA
34.14
氢键供体(HBD)数目
0
氢键受体(HBA)数目
2
可旋转键数目(RBC)
0
重原子数目
12
分子复杂度/Complexity
227
定义原子立体中心数目
0
InChi Key
FRASJONUBLZVQX-UHFFFAOYSA-N
InChi Code
InChI=1S/C10H6O2/c11-9-5-6-10(12)8-4-2-1-3-7(8)9/h1-6H
化学名
naphthalene-1,4-dione
别名
1,4Naphthoquinone; 1,4 Naphthoquinone
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~100 mg/mL (~632.27 mM)
H2O : < 0.1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: 2.5 mg/mL (15.81 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 2.5 mg/mL (15.81 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 6.3227 mL 31.6136 mL 63.2271 mL
5 mM 1.2645 mL 6.3227 mL 12.6454 mL
10 mM 0.6323 mL 3.1614 mL 6.3227 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们