Yoda1

别名: Yoda1; Yoda-1; GlyT2-IN-1; YODA-1; 2-((2,6-dichlorobenzyl)thio)-5-(pyrazin-2-yl)-1,3,4-thiadiazole; TW6GF9RW6S; 2-[(2,6-dichlorophenyl)methylsulfanyl]-5-pyrazin-2-yl-1,3,4-thiadiazole; Yoda 1
目录号: V5258 纯度: ≥98%
Yoda 1 (GlyT2-IN-1) 是一种新颖且有效的 Piezo1 激动剂,Piezo1 是机械传导通道。
Yoda1 CAS号: 448947-81-7
产品类别: Piezo Channel
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Yoda 1 (GlyT2-IN-1) 是一种新型、有效、选择性的 Piezo1 激动剂,Piezo1 是机械传导通道。 Yoda 1 激活纯化的 Piezo1 通道。 Yoda1 的作用是在 Piezo1 细胞中引发 Ca2+ 通量,但在载体转染细胞中则不然。
生物活性&实验参考方法
靶点
ERK1/2
体外研究 (In Vitro)
Akt 和 ERK1/2 由 Yoda1 以不依赖于 Piezo1 的方式激活(0–6 μM,5 分钟)[2]。 Yoda1(1.5 μM,5 分钟)可抑制 Rac1 激活 [3]。
Piezo1的抑制或激活影响体外ICH模型中HT22细胞的凋亡[1]
根据Wang等人(2022)建立了体外ICH模型。我们首先用不同浓度(0、10、20、40、60、80、100、120或140μM)的氯化血红素溶液处理体外培养的HT22细胞,以找出氯化血红素的IC50。我们发现氯化血红素的IC50为100μM(图6a)。然后,我们使用IC50(100μM)的氯化血红素溶液处理HT22细胞24小时,观察氯化血红素对HT22细胞存活率和HT22细胞中指定基因蛋白质水平的影响。在氯化血红素处理后1小时,表面上就观察到HT22细胞变小变圆的异常形态变化(图6b)。活细胞计数的定量分析显示,氯化血红素处理24小时后,活HT22细胞的数量减少了50%(图6c)Yoda-1(一种Piezo1激活剂)处理进一步减少了用氯化血红素预处理的活HT22细胞的数量。相比之下,GsMTx4(Piezo1阻断剂)治疗显著逆转了氯化血红素预处理后活HT22细胞数量的大幅减少(图6c)。
Yoda-1诱导内皮细胞中Akt和ERK1/2的激活。 钆(Gd3+)可以消除Yoda-1对Akt的激活,但不能激活ERK1/2。 钌红(RR)能有效阻断Yoda1诱导的Akt激活。 GsMTx4是Piezo1的强效阻断剂,不会抑制Yoda1诱导的Akt或ERK1/2磷酸化。[2]
Yoda-1对EGF刺激的大颗粒细胞增多的抑制作用依赖于Piezo1。 KCa3.1激活是Yoda-1抑制褶皱形成所必需的。 在这项研究中,我们发现,Yoda-1处理导致Rac1活化受到抑制,从而抑制了外周膜褶皱的形成(图3)。据报道,在癌症细胞中敲低Piezo1导致Rac1激活51。这项先前的研究可能表明Piezo1激活抑制Rac1,尽管其机制尚不清楚。重要的是,我们进一步表明,Yoda1对大白细胞增多的抑制作用取决于通过Piezo1的细胞外Ca2+内流(图4)。即使在Yoda1存在的情况下,对钙激活钾通道KCa3.1的抑制也恢复了EGF刺激的膜褶皱形成(即肌动蛋白重排)(图5A,B)。这表明,在KCa3.1被抑制的条件下,即使在Yoda1存在的情况下,EGF刺激的肌动蛋白重排也可以被诱导。因此,我们提出Piezo1激活后KCa3.1激活可能导致肌动蛋白重排的抑制。之前的一项研究报告称,KCa3.1的激活在膜褶皱闭合中至关重要,这是大细胞吞噬过程的后期21。另一方面,我们发现KCa3.1激活剂和Yoda1也会损害大白细胞增多症(图5C-E)。总之,我们的结果表明,KCa3.1的适当时间激活在大白细胞增多症中很重要,在Yoda1诱导的急性Ca2+内流后,KCa3-1的激活可能会导致肌动蛋白重排的抑制(图5F)[3]。
体内研究 (In Vivo)
脑出血后继发性脑损伤是脑出血患者预后不良的主要原因,但其潜在机制尚不清楚。在脑出血小鼠模型中研究了Piezo1在脑出血后脑损伤中的作用。ICH是通过将自体动脉血注入小鼠基底节而建立的。将载体、Piezo1阻断剂、GsMTx4、Piezo-1激活剂、Yoda-1或与甘露醇(尾静脉注射)一起注射到小鼠脑左侧脑室后,通过各种指示方法确定Piezo1水平以及Piezo1在脑出血后神经元损伤、脑水肿和神经功能障碍中的作用。脑出血后24小时,神经元中的Piezo1蛋白水平显著上调(人和小鼠)。作为体外ICH模型,氯化血红素处理后24小时,体外培养的HT22细胞(一种小鼠神经元细胞系)中Piezo1蛋白水平也显著上调。GsMTx4治疗或与甘露醇一起显著下调Piezo1和AQP4水平,显著提高Bcl2水平,维持更多神经元存活,显著恢复脑血流,显著缓解脑水肿,显著降低血清IL-6水平,并几乎完全逆转ICH 24小时组小鼠的神经功能障碍。相比之下,Yoda-1处理达到了相反的效果。综上所述,Piezo1在脑出血后脑损伤的发病机制中起着至关重要的作用,可能成为脑出血临床治疗的靶点。[4]
酶活实验
384-well格式[1]
转染后2天,使用ELx405 CW洗板机用测定缓冲液(1×HBSS,10 mM HEPES,pH7.4)洗涤细胞。将细胞与含有4μM Fluo3和0.04%Pluronic F-127的测定缓冲液一起孵育约60分钟,然后再次用测定缓冲液洗涤。在荧光成像板阅读器(FLIPR)Tetra上监测荧光。为了螯合细胞外钙(1×HBSS含有1.26 mM CaCl2),在2 mM EGTA存在下,在加入指定浓度的Yoda1前1分钟向细胞中加入2 mM乙二醇四乙酸(EGTA)。为了消耗细胞内钙,在加入Yoda1前15分钟加入7.5μM的thapsigargin。使用Yoda1在二甲亚砜(DMSO)中的10mM储备溶液,在测定中产生最多1%的DMSO。使用可变斜率的S形剂量反应拟合浓度反应曲线。[1]
1536-well高通量筛选格式[1]
为了鉴定Piezo1或Piezo2激动剂,我们用等量的mPhoto1和mPhoto2 cDNA共转染细胞。2天后,根据制造商的说明,将转染细胞与Calcium5一起孵育,并在FLIPR Tetra上监测荧光。从LMW诺华筛选库中筛选了约325万种化合物,其中包括公共领域和专有药物样分子,浓度为5μM。在共转染细胞以及单个Piezo1和2转染和对照细胞中,选择约9000次点击(定义为DMSO对照孔上方50%的激活)进行重新测试。由此,Yoda1被确定为潜在的Piezo1激活剂,并被选中进行进一步研究。
细胞实验
蛋白质印迹分析
细胞类型:人冠状动脉内皮细胞 (HCAEC) [2]、A431 细胞 [3]
测试浓度: 0、1.5、 3.0 和 6.0 μM
孵育时间: 5 分钟
实验结果:诱导 Akt 和 ERK1/2 激活,并提高 Akt 和 ERK1/2 的磷酸化水平呈剂量依赖性。抑制 EGF 诱导的 Rac1-GTP 量增加并抑制 Rac1 激活.
体外intracerebral hemorrhage (ICH) 模型[4]
通过氯化血红素处理体外培养的HT22细胞(一种小鼠海马神经元细胞系)来模拟体外ICH模型。根据Wang等人(2022)的研究,HT22细胞与DMEM(10%胎牛血清和1%青霉素-链霉素)预培养12小时。然后,将每种不同浓度(0、10、20、40、60、80、100、120或140μM)的氯化血红素溶液加入细胞培养基中,再培养24小时的HT22细胞。对于GsMTx4或Yoda-1治疗组,在向HT22细胞中添加氯化血红素1小时后添加GsMTx4或Yoda-1
动物实验
Inhibition or activation of Piezo1 after intracerebral hemorrhage (ICH) in mice[4]
The effects of Piezo1 blocker, GsMTx4, and Piezo1 activator, Yoda-1, on brain edema and neurological dysfunctions after ICH were studied in 27 mice. The mice were divided into five groups, (1) control (n = 6), (2) ICH 24 h (n = 6), (3) ICH 72 h (n = 3), (4) ICH 24 h + GsMTx4 (3 μM, n = 6), and (5) ICH 24 h + Yoda-1 (10 μM, n = 6). Please refer to the Supplementary Materials and Methods file (Appendix A Supplementary data) for details.
参考文献

[1]. Chemical activation of the mechanotransduction channel Piezo1. Elife. 2015 May 22:4:e07369.

[2]. Yoda1-induced phosphorylation of Akt and ERK1/2 does not require Piezo1 activation. Biochem Biophys Res Commun. 2018 Feb 26;497(1):220-225.

[3]. Piezo1 activation using Yoda1 inhibits macropinocytosis in A431 human epidermoid carcinoma cells. Sci Rep. 2022 Apr 15;12(1):6322.

[4]. Roles of mechanosensitive ion channel PIEZO1 in the pathogenesis of brain injury after experimental intracerebral hemorrhage. Neuropharmacology . 2024 Jun 15:251:109896.

其他信息
Yoda 1 is a member of the class of thiadiazoles that is 1,3,4-thiadiazole substituted by pyrazin-2-yl and (2,6-dichlorobenzyl)sulfanediyl groups at positions 2 and 5, respectively. It is a selective activator of mechanosensitive channel piezo1. It has a role as a glycine transporter 2 inhibitor and a piezo1 agonist. It is an aromatic compound, a member of pyrazines, a member of thiadiazoles, an organic sulfide and a dichlorobenzene.
Piezo ion channels are activated by various types of mechanical stimuli and function as biological pressure sensors in both vertebrates and invertebrates. To date, mechanical stimuli are the only means to activate Piezo ion channels and whether other modes of activation exist is not known. In this study, we screened ~3.25 million compounds using a cell-based fluorescence assay and identified a synthetic small molecule we termed Yoda1 that acts as an agonist for both human and mouse Piezo1. Functional studies in cells revealed that Yoda1 affects the sensitivity and the inactivation kinetics of mechanically induced responses. Characterization of Yoda1 in artificial droplet lipid bilayers showed that Yoda1 activates purified Piezo1 channels in the absence of other cellular components. Our studies demonstrate that Piezo1 is amenable to chemical activation and raise the possibility that endogenous Piezo1 agonists might exist. Yoda1 will serve as a key tool compound to study Piezo1 regulation and function. [1]
Piezo1 is a mechanosensitive cation channel that is activated by shear stress in endothelial cells (ECs). It has been shown to mediate shear-induced EC responses, including increased calcium influx, and vascular functions, such as vascular tone and blood pressure. Yoda1, a selective Piezo1 activator, has been shown to mimic shear-induced responses in ECs. Since shear-induced calcium influx causes Akt and ERK1/2 activation in ECs, we examined the effects of Yoda1 and the role of Piezo1 on their activation. Here, we show that Yoda1 robustly activates Akt and ERK1/2 in ECs. Additionally, the Piezo1 antagonists, gadolinium and ruthenium red, but not GsMTx4, effectively blocks Yoda1-induced Akt activation. Our results suggest that Yoda1-induced Akt and ERK1/2 activation is not dependent on Piezo1. [2]
Macropinocytosis is a type of endocytosis accompanied by actin rearrangement-driven membrane deformation, such as lamellipodia formation and membrane ruffling, followed by the formation of large vesicles, macropinosomes. Ras-transformed cancer cells efficiently acquire exogenous amino acids for their survival through macropinocytosis. Thus, inhibition of macropinocytosis is a promising strategy for cancer therapy. To date, few specific agents that inhibit macropinocytosis have been developed. Here, focusing on the mechanosensitive ion channel Piezo1, we found that Yoda1, a Piezo1 agonist, potently inhibits macropinocytosis induced by epidermal growth factor (EGF). The inhibition of ruffle formation by Yoda1 was dependent on the extracellular Ca2+ influx through Piezo1 and on the activation of the calcium-activated potassium channel KCa3.1. This suggests that Ca2+ ions can regulate EGF-stimulated macropinocytosis. We propose the potential for macropinocytosis inhibition through the regulation of a mechanosensitive channel activity using chemical tools. [3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C13H8CL2N4S2
分子量
355.265417098999
精确质量
353.956
元素分析
C, 43.95; H, 2.27; Cl, 19.96; N, 15.77; S, 18.05
CAS号
448947-81-7
相关CAS号
448947-81-7;
PubChem CID
2746822
外观&性状
White to light yellow solid powder
密度
1.6±0.1 g/cm3
沸点
538.4±60.0 °C at 760 mmHg
闪点
279.4±32.9 °C
蒸汽压
0.0±1.4 mmHg at 25°C
折射率
1.714
LogP
4.89
tPSA
105
氢键供体(HBD)数目
0
氢键受体(HBA)数目
6
可旋转键数目(RBC)
4
重原子数目
21
分子复杂度/Complexity
329
定义原子立体中心数目
0
SMILES
C1=CC(=C(C(=C1)Cl)CSC2=NN=C(S2)C3=NC=CN=C3)Cl
InChi Key
BQNXBSYSQXSXPT-UHFFFAOYSA-N
InChi Code
InChI=1S/C13H8Cl2N4S2/c14-9-2-1-3-10(15)8(9)7-20-13-19-18-12(21-13)11-6-16-4-5-17-11/h1-6H,7H2
化学名
2-[5-(2,6-Dichloro-benzylsulfanyl)-[1,3,4]thiadiazol-2-yl]-pyrazine
别名
Yoda1; Yoda-1; GlyT2-IN-1; YODA-1; 2-((2,6-dichlorobenzyl)thio)-5-(pyrazin-2-yl)-1,3,4-thiadiazole; TW6GF9RW6S; 2-[(2,6-dichlorophenyl)methylsulfanyl]-5-pyrazin-2-yl-1,3,4-thiadiazole; Yoda 1
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~15.62 mg/mL (~43.97 mM)
Ethanol : ~5 mg/mL (~14.07 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 1.56 mg/mL (4.39 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 15.6mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

配方 2 中的溶解度: ≥ 1.56 mg/mL (4.39 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 15.6 mg/mL 澄清 DMSO 储备液添加到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.8148 mL 14.0738 mL 28.1476 mL
5 mM 0.5630 mL 2.8148 mL 5.6295 mL
10 mM 0.2815 mL 1.4074 mL 2.8148 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • A high-throughput screen identifies a Piezo1 activating chemical, Yoda1. (A) mPiezo1 mediates Ca2+ influx upon mechanical activation. Ratiometric Ca2+ imaging (Fura-2) of human embryonic kidney (HEK) 293T cells transiently transfected with Piezo1 or untransfected. Cells were subjected to a series of mechanical stimuli, by pressing a glass probe briefly onto the cell surface for 150 ms (arrows). For each consecutive stimulus, the travel distance of probe was increased by 1 μm (B) Yoda1 (25 μM) mediates Ca2+ responses (384-well FLIPR) in HEK cells transiently transfected with mPiezo1. When indicated, extracellular calcium was chelated by addition of EGTA, or cells were pretreated with thapsigargin to deplete intracellular calcium stores. Traces represent average ± SEM fluorescence of four wells. (C) Concentration-response profiles of mouse and human Piezo1 and Piezo2, transfected HEK293T cells assayed using FLIPR suggesting apparent EC50 of 17.1 and 26.6 μM for mouse and human Piezo1, respectively (95% confidence interval: 13.4 to 21.9, and 20.6 to 34.4), however, compound (in) solubility precludes meaningful conclusions with respect to EC50 (see text). (D) Chemical structure of Yoda1. The functional groups tested chlorines and thioether are highlighted. Elife . 2015 May 22:4:e07369.
  • Yoda1 functions as a gating modifier of Piezo1. (A–E) mPiezo1-transfected HEK293T cells, cell-attached patch configuration. (A) Typical recordings of stretch-activated currents at −80 mV in two mPiezo1-transfected cells with or without 30 μM Yoda1 in the patch pipette. Negative pressure pulses from 0 to −80 mm Hg are applied for 500 ms every 15 s. (B) Average normalized current–pressure relationships from mPiezo1-transfected cell recordings with or without 30 μM Yoda1 in the patch pipette (n = 8 and 12, respectively). (C) Average P50 values from individual cells used for panel B (p < 0.05, Mann–Whitney t-test). (D) High magnification of recording traces shown in panel A in the absence of stretch stimulation. Left panels are full-trace histograms. (E) Average current without stretch stimulation normalized to maximal stretch-activated current from mPiezo1-transfected cells recorded at −80 mV with or without 30 μM Yoda1 in the patch pipette (n = 8 and 12, respectively; p < 0.05, Mann–Whitney t-test). (F–H) mPiezo1- and mPiezo2-transfected HEK293T cells, whole-cell configuration. (F) Stimulus displacement in 0.5-μm increments every 10 s before (black trace) and 1–2 min after bath application of 10 μM Yoda1 (red trace). A 20-mV step was applied in the beginning of each sweep (sweeps are concatenated and hack marks indicate ∼10 s) to monitor membrane (Rm) and access (Ra) resistance. (G) The fold change in the inactivation time constant indicates a significant slowing of inactivation during Yoda1 exposure. The effect was completely reversible (not shown). The baseline tau prior to Yoda1 exposure was 16.5 ± 1.5 ms (n = 5) (H). No effect was observed upon Yoda1 exposure (up to 5 min) to the mechanically activated currents elicited in a cell expressing mPiezo2. Fold change in inactivation time constant was 0.89-, 1.19-, and 1.25-fold (n = 3). Dotted lines indicated 0 current level (current traces) and displacement at which cell was visibly touched (top). *p < 0.005, Mann–Whitney t-test. Elife . 2015 May 22:4:e07369.
  • Yoda1 activates mPiezo1 in a membrane-delimited fashion. (A) Electrical recordings of reconstituted mPiezo1 in the symmetric DiPhytanoyl-sn-glycero-3-PhosphoCholine (DPhPC) bilayers and corresponding all point current histograms without the application of Yoda1. (B) Single-channel electrical recordings of reconstituted mPiezo1 in the symmetric DPhPC bilayers in the presence of 1 μM Yoda1. The calculated single-channel conductance of outward currents from the corresponding all point current histograms is 98 ± 9 pS in 0.5 M KCl, 20 mM HEPES, pH 7.4 at V = 100 mV. (C) Macroscopic currents of mPiezo1 in the presence of 10 μM Yoda1 (upper left panel) followed by the injection of 30 μM blocker RR (upper right panel). The lower left panel is an expansion of the record (red line) to highlight multiple-channel openings. The lower right panel shows a complete block of channel activity after 6 s of RR injection. (D) Maximum current obtained at the indicated concentrations of Yoda1 (red bars) and the subsequent block by RR (black bars). Each concentration point is plotted (red bars) as the function of maximum currents obtained in an ‘n’ number of experiments at V = 100 mV. Error bars indicate standard deviation. Note the lack of Piezo activity either without Yoda1 (n = 9) or without mPiezo1 (n = 10) in the bilayers. When indicated, Yoda1 is reconstituted in the DPhPC liposomes prior to the bilayer formation. (E) Representative histograms of closed (left graph) and open (right graph) dwell times extracted from single-channel analysis of mPiezo1 in the presence of 1 μM Yoda1; τ1 closed = 3 ± 1 ms, τ2 closed = 57 ± 15 ms, and τ open = 55 ± 9 ms. (F) Representative histograms of closed (left graph) and open (right graph) dwell times extracted from single-channel analysis of mPiezo1 reconstituted in an asymmetric bilayers (without Yoda1); τ1 closed = 5 ± 1 ms, τ2 closed = 47 ± 9 ms, and τ open = 13 ± 4 ms. Elife . 2015 May 22:4:e07369.
相关产品
联系我们