RMC-6236

别名: RAS-IN-2; RAS In 2; RMC-6236; RMC 6236; RMC6236; EX-A6631; DA-77354; RMC-6236; Compound A122; RAS Inhibitor A122; (Z)-N-(11-ethyl-12-(2-(1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide; RMC6236
目录号: V51194 纯度: =99.63%
RMC-6236 (化合物 A122)是一种有效的 RAS(ON)MULTI 抑制剂,可用于癌症相关研究。
RMC-6236 CAS号: 2765081-21-6
产品类别: Ras
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
10mg
25mg
50mg
100mg
500mg
1g
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: =99.63%

产品描述
RMC-6236 (化合物 A122)是一种有效的 RAS(ON)MULTI 抑制剂,可用于癌症相关研究。
生物活性&实验参考方法
靶点
KRas G12D
体外研究 (In Vitro)
RMC-6236 (5 天)抑制 AsPC-1 (K-Ras G12D) 细胞活力,IC50 为 1–10 μM[1]。
RAS驱动的癌症占人类癌症的30%。RMC-6236是一种RAS(ON)多选择性非共价抑制剂,可抑制典型RAS亚型的突变型和野生型变体的活性GTP结合状态,对上述未满足的医疗需求具有广泛的治疗潜力。RMC-6236在RAS成瘾细胞系中表现出强大的抗癌活性,特别是那些在KRAS密码子12处存在突变的细胞系。[2]
体内研究 (In Vivo)
在KRASG12X异种移植物模型的小鼠临床试验中,口服RMC-6236在体内是耐受的,并推动了多种肿瘤类型的深度肿瘤消退。转化PK/疗效和PK/PD建模预测,在RAS驱动的肿瘤患者中,每日剂量为100mg和300mg将分别实现肿瘤控制和客观反应。与此一致,我们在这里分别描述了两名晚期KRASG12X肺腺癌和胰腺癌患者(每天300mg)的客观反应,证明了RMC-6236在正在进行的I/Ib期临床试验(NCT05379985)中的初始活性。[2]
酶活实验
RAS-RAF TR-FRET。[2]
通过时间分辨荧光能量转移(TR-FRET)在反应缓冲液(25 mmol/L HEPES NaOH pH 7.3,0.002%吐温20,0.1%牛血清白蛋白,100 mmol NaCl、5mmol/L MgCl2)。加入化合物或DMSO对照(1%v/v)并孵育1.5小时,然后在PerkinElmer Envision平板读数器上测量TR-FRET(在320 nm处激发,20μs延迟,100μs窗口,闪光间隔2000μs;在单独的通道中在665 nm和615 nm处发射)。FRET比率(665/615 nmol/L发射)用于计算%抑制率,如下:[1-(样品的FRET比率-阳性对照的平均FRET比率)/(DMSO对照的平均FRET比率-阳性控制的平均FRET比例)]×100%。
CypA结合亲和力(KD1)。[2]
在Biacore 8K仪器上通过表面等离子体共振(SPR)评估化合物对CypA的结合亲和力。AviTag-CypA固定在链霉抗生物素蛋白传感器芯片上,并在测定缓冲液(10 mmol/L HEPES NaOH pH 7.4,150 mmol/L NaCl,0.005%v/v表面活性剂P20,2%v/v DMSO)中使不同浓度的化合物流过芯片。使用稳态亲和力模型或1:1结合(动力学)模型拟合SPR传感图,以评估KD1与CypA的结合。
RAS结合亲和力(KD2)。[2]
在Biacore 8K仪器上通过SPR评估化合物结合的CypA对上述突变致癌RAS蛋白的结合亲和力。AviTag RAS[1–169]固定在链霉抗生物素蛋白传感器芯片上,在测定缓冲液(10 mmol/L HEPES NaOH pH 7.4,150 mmol/L NaCl,0.005%v/v表面活性剂P20,2%v/v DMSO,25μmol/L CypA)中使不同浓度的化合物流过芯片。使用稳态亲和力模型或1:1结合(动力学)模型拟合SPR传感图,以评估RAS结合的KD。
细胞ERK磷酸化的AlphaLISA和中尺度发现(MSD)分析。[2]
将NCI-H441、Capan-2、HPAC或等基因无RAS MEF细胞接种在经组织培养处理的384孔和96孔板中,并孵育过夜。第二天,使用Labcyte Echo 550或Tecan D300e数字分配器将细胞暴露于化合物或DMSO对照(0.1%v/v)的连续稀释液中指定的时间点。孵育后,细胞被裂解,并按照制造商的方案,使用AlphaLISA SureFire Ultra pERK1/2(T202/Y204)检测试剂盒或MSD多阵列检测系统磷酸化/总ERK1/2全细胞裂解试剂盒(K15107D)测定ERK磷酸化水平。使用具有标准AlphaLISA设置的PerkinElmer Envision或MSD的Meso QuickPlex SQ120阅读器检测信号。对于AlphaLISA,数据表示为DMSO处理对照的百分比:100-100×(pERKDMSO-pERK处理)/(pERKDMSO-pERKmedia)。将来自pERK1/2的MSD信号除以MSD信号,得到总ERK1/2。将该比率归一化为载体(pERK/总ERK的百分比=(pERK处理/总ERK-处理的比率)/(pERKDMSO/总ERKDMSO的比率)×100)。对于这两种测定,数据均绘制为log M[化合物]的函数,并采用S形浓度响应(可变斜率)模型拟合数据,以估算Prism 9中的抑制剂EC50。
细胞实验
PRISM筛查[2]
RMC-6236以8点浓度加入384孔板中,稀释3倍,一式三份。然后用解冻的细胞系池接种这些可用于检测的平板。贴壁细胞池以每孔1250个细胞的速度铺板,而悬浮液和混合贴壁/悬浮液池则以每孔2000个细胞的方式铺板。将处理过的细胞孵育5天,然后裂解。在条形码扩增和检测之前,将裂解物板折叠在一起。
2D细胞增殖分析。[2]
将NCI-H441、Capan-2和HPAC细胞接种在组织培养处理的384或96孔板中,并孵育过夜。使用Labcyte Echo 550或Tecan D300e数字分配器将细胞暴露于化合物或DMSO对照(0.1%v/v)的连续稀释液中,并在37°C下孵育120小时。在复合处理时,用强力霉素对强力霉素诱导的细胞系进行复育。根据制造商的方案,用CellTiter Glo 2.0试剂测定细胞存活率。使用PerkinElmer Enspire的SpectraMax M5平板阅读器检测发光。将发光信号归一化为载体处理的孔[%载体=(发光处理/平均值(发光载体)×100]。将数据绘制为对数摩尔[抑制剂]的函数,并将4参数S形浓度响应模型拟合到数据中以计算EC50。通过将处理过的细胞计数归一化为其各自的未处理细胞计数来计算生长百分比。
动物实验
RMC-6236 Formulation. [2]
For in vitro studies, RMC-6236 was resuspended in dimethyl sulfoxide (DMSO) and used at 10 mmol/L stock concentration. For use in in vivo studies, RMC-6236 was prepared using formulation of 10/20/10/60 (%v/v/v/v) DMSO/PEG 400/Solutol HS15/water. The same vehicle formulation was used for all control groups.
RMC-6236 Treatment. [2]
Tumor-bearing animals were randomized and assigned into groups (n = 1–10/group). The vehicle at 10 mL/kg or RMC-6236 at indicated doses was administered via oral gavage daily, and animals were treated for 28 days, or up to 90 days if PFS was being assessed. Animals were terminated early if the tumor burden reached a humane endpoint, or adverse effect was observed with body weight loss as a surrogate. For single-dose PKPD study, mice were randomized and assigned into groups (n = 3/dose/time point). A single dose of RMC-6236 was administered orally at either 3, 10, or 25 mg/kg. Blood and tissues, including the tumor, brain, colon, ear skin, and muscle, were harvested at indicated time points. Whole blood was collected in K2EDTA Microtainer tubes, incubated for 5 minutes, and snap-frozen in liquid nitrogen. The tissue was either fixed in 10% formalin or snap-frozen in liquid nitrogen for further analysis.[2]
Mouse Blood and Tissue Sample Bioanalysis. [2]
The whole blood, tumor, brain, colon, and ear skin concentrations of RMC-6236 were determined using liquid chromatography–tandem mass spectrometry (LC/MS-MS) methods. Tissue samples were homogenized with a 10 × volume of homogenization buffer [methanol/15 mmol/L PBS (1:2; v:v) or 15 mmol/L PBS with 10% methanol]. An aliquot of whole blood or homogenized tissue (10, 20, or 40 μL) was transferred to 96-well plates (or tubes) and quenched with a 10 × volume of acetonitrile or 20 × volume of acetonitrile/methanol (1:1; v/v) with 0.1% formic acid containing a cocktail of internal standards (IS). After thorough mixing and centrifugation, the supernatant was diluted with water or directly analyzed on a Sciex 5500 or Sciex 6500+ triple quadrupole mass spectrometer equipped with an ACQUITY or Shimadzu UPLC system. A Halo 90Å AQ-C18 2.7 μm (2.1 × 50 mm) or an ACQUITY UPLC BEH C18 or C4 1.7 μm (2.1 × 50 mm) column was used with gradient elution for compound separation. RMC-6236 and IS (verapamil, celecoxib, glyburide, dexamethasone, or terfenadine) were detected by positive electrospray ionization using multiple reaction monitoring (RMC-6236: m/z 811/779; verapamil: m/z 455/165; celecoxib: m/z 382/362; glyburide: m/z 494/169; dexamethasone: m/z 393/373; terfenadine: m/z 472/436). The lower limit of quantification was 1 ng/mL or 2 ng/mL for blood, tumor, and other tissue.
PK/PD Relationship. [2]
Concentrations of RMC-6236 in tumor or normal tissues and percentage of DUSP6 inhibition as compared with the vehicle control from individual animals were collected and analyzed post a single dose of RMC-6236 ranging from 0.3 to 100 mg/kg (Supplementary Table S6). A 3-parameter sigmoidal exposure–response model was fitted to the data in GraphPad Prism to derive EC50 and EC90 values.
PK/Efficacy and PK/PD Modeling. [2]
For PK modeling, whole blood PK data from single or repeat dose administration of 25 or 40 mg/kg RMC-6236 to NCI-H441 xenograft tumor-bearing mice were used (Supplementary Table S9). RMC-6236 blood PK was best described using a one-compartment model with first-order absorption and elimination. Because intravenous data were not included in the modeling, the model was parameterized in terms of apparent clearance (CL/F) and volume of distribution (V/F), where F is the oral bioavailability.
Specifically, to understand the responsiveness of tumors harboring diverse oncogenic Kras variants to RMC-6236 treatment, lung tumors were initiated in B6 mice using a barcoded lentivirus pool including vectors encoding oncogenic KRAS mutant (G12C, G12V, G12D, G12A, Q61H, or G13D) cDNAs (Lenti;KrasMUT;BC). Thirteen weeks post tumor initiation, mice were treated for 3 weeks with either: (i) vehicle (10% DMSO, 20% PEG400, 10% Solutol HS15, 60% water) po qd and 10 mg/kg isotype rat igg2a[2a3] ip biw; or (ii) RMC-6236 20 mg/kg po qd.
参考文献

[1]. Use of sos1 inhibitors to treat malignancies with shp2 mutations. Patent WO2022060583A1.

[2]. Translational and Therapeutic Evaluation of RAS-GTP Inhibition by RMC-6236 in RAS-Driven Cancers. Cancer Discov. 2024 Jun 3;14(6):994-1017.
[3]. Concurrent inhibition of oncogenic and wild-type RAS-GTP for cancer therapy. Nature. 2024 May;629(8013):919-926.
[4]. Drugging RAS: Moving Beyond KRASG12C. Cancer Discov. 2023 Dec 12;13(12):OF7.
[5]. State-of-the-art and upcoming trends in RAS-directed therapies in gastrointestinal malignancies. Curr Opin Oncol. 2024 Jul 1;36(4):313-319.
其他信息
RAS-driven cancers comprise up to 30% of human cancers. RMC-6236 is a RAS(ON) multi-selective noncovalent inhibitor of the active, GTP-bound state of both mutant and wild-type variants of canonical RAS isoforms with broad therapeutic potential for the aforementioned unmet medical need. RMC-6236 exhibited potent anticancer activity across RAS-addicted cell lines, particularly those harboring mutations at codon 12 of KRAS. Notably, oral administration of RMC-6236 was tolerated in vivo and drove profound tumor regressions across multiple tumor types in a mouse clinical trial with KRASG12X xenograft models. Translational PK/efficacy and PK/PD modeling predicted that daily doses of 100 mg and 300 mg would achieve tumor control and objective responses, respectively, in patients with RAS-driven tumors. Consistent with this, we describe here objective responses in two patients (at 300 mg daily) with advanced KRASG12X lung and pancreatic adenocarcinoma, respectively, demonstrating the initial activity of RMC-6236 in an ongoing phase I/Ib clinical trial (NCT05379985). Significance: The discovery of RMC-6236 enables the first-ever therapeutic evaluation of targeted and concurrent inhibition of canonical mutant and wild-type RAS-GTP in RAS-driven cancers. We demonstrate that broad-spectrum RAS-GTP inhibition is tolerable at exposures that induce profound tumor regressions in preclinical models of, and in patients with, such tumors. This article is featured in Selected Articles from This Issue, p. 897.[1]
RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).[2]
Preliminary results from phase I trials respectively evaluating RMC-6236, a pan-RAS inhibitor, and HRS-4642, a KRASG12D inhibitor, indicate that both are safe and show promising signs of antitumor activity. These are just two of the candidate RAS therapies in a burgeoning development space as the field looks ahead to drugs that hit more than just KRASG12C.[3]
Purpose of review: Overall, the review underscores the evolving landscape of KRAS-targeted therapy and the potential for these approaches to improve outcomes for patients with gastrointestinal malignancies. It highlights the importance of ongoing research and clinical trials in advancing precision medicine strategies for KRAS-driven cancers. This review provides a comprehensive overview of the RAS signaling pathway and its significance in gastrointestinal malignancies. Recent findings: The introduction of KRAS inhibitor represents a significant advancement in the treatment landscape for KRAS-mutant cancers. In this review, we discuss upcoming trends in KRAS-targeted therapy, including the development of mutant-specific direct KRAS inhibitors like MRTX1133 and pan-RAS inhibitors such as RMC-6236. It also explores indirect RAS inhibitors targeting upstream and downstream components of the RAS pathway. Additionally, the review examines other upcoming strategies like combination therapies, such as CDK4/6 and ERK MAPK inhibitors, as well as adoptive cell therapy and cancer vaccines targeting KRAS-mutant cancers. Summary: Targeting RAS has become an important strategy in treating gastrointestinal cancer. These findings in this review underscore the importance of a multidisciplinary approach, integrating advances in molecular profiling, targeted therapy, immunotherapy, and clinical research to optimize treatment strategies for patients with KRAS-mutant gastrointestinal malignancies.[4]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C44H58N8O5S
分子量
811.06
精确质量
810.43
元素分析
C, 65.16; H, 7.21; N, 13.82; O, 9.86; S, 3.95
CAS号
2765081-21-6
相关CAS号
2765081-21-6; 2765091-21-0 (racemate)
PubChem CID
164726578
外观&性状
White to off-white solid
LogP
5.1
tPSA
162Ų
氢键供体(HBD)数目
2
氢键受体(HBA)数目
11
可旋转键数目(RBC)
7
重原子数目
58
分子复杂度/Complexity
1470
定义原子立体中心数目
5
InChi Key
FVICRBSEYSHKFY-UHFFFAOYSA-N
InChi Code
InChI=1S/C44H58N8O5S/c1-8-51-37-12-11-28-19-31(37)33(40(51)32-20-29(23-45-39(32)27(3)56-7)50-16-14-49(6)15-17-50)22-44(4,5)25-57-43(55)34-10-9-13-52(48-34)42(54)35(21-38-46-36(28)24-58-38)47-41(53)30-18-26(30)2/h11-12,19-20,23-24,26-27,30,34-35,48H,8-10,13-18,21-22,25H2,1-7H3,(H,47,53)
化学名
N-[21-ethyl-20-[2-(1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl]-17,17-dimethyl-8,14-dioxo-15-oxa-4-thia-9,21,27,28-tetrazapentacyclo[17.5.2.12,5.19,13.022,26]octacosa-1(25),2,5(28),19,22(26),23-hexaen-7-yl]-2-methylcyclopropane-1-carboxamide
别名
RAS-IN-2; RAS In 2; RMC-6236; RMC 6236; RMC6236; EX-A6631; DA-77354; RMC-6236; Compound A122; RAS Inhibitor A122; (Z)-N-(11-ethyl-12-(2-(1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-methylcyclopropane-1-carboxamide; RMC6236
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~250 mg/mL (~308.2 mM)
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.2330 mL 6.1648 mL 12.3295 mL
5 mM 0.2466 mL 1.2330 mL 2.4659 mL
10 mM 0.1233 mL 0.6165 mL 1.2330 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05379985 Recruiting Drug: RMC-6236 Colorectal Cancer
(CRC)
Advanced Solid Tumors
Revolution Medicines, Inc. May 31, 2022 Phase 1
相关产品
联系我们